HDU 1569 二分图带权最大独立集 最小割

题意:给你一个n×m的棋盘 每个格子都有一个非负整数 从中选取一些数 使得相邻两数没有公共边 问取到的数的最大和是多少

思路:取出来的数不相邻 也就是说如果选取一个数 它上下左右都不能选 而且和要最大 这是不是像某种图论模型 没错 是他是他就是他 二分图最大独立集~ 但是这个题目多了权值 就不能用Hungary算法来实现了 要用到网络流的知识了 具体做法是 对于奇数格子的点 将源点与该格子连边 容量为格子的值 偶数格子的点 将该点与汇点连边 对于不可以同时选的点i j 连边i 到 j 容量为INF 格子总权值-最大流即为答案

为什么这么做是正确的呢 对于不带权的二分图 最大独立集 = 顶点数 - 最大匹配数 而对于带权的二分图 求完最大流以后的最小割边即为匹配的边 因为最小割是容量最小的割 所以求出来的匹配的边的权值是所有可能的匹配情况的最小值 答案即为最大了~

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define REP( i, a, b ) for( int i = a; i < b; i++ )
#define FOR( i, a, b ) for( int i = a; i <= b; i++ )
#define CLR( a, x ) memset( a, x, sizeof a )
#define CPY( a, x ) memcpy( a, x, sizeof a )
#define BUG puts( "**** BUG ****" )

typedef long long LL;

const int maxn = 2500 + 10;
const int maxe = 10000 + 10;
const int INF = 0x7fffffff;
const int dir[4][2] = {-1, 0, 1, 0, 0, -1, 0, 1};

struct Edge{
          int v, c, f;
          int next;
          Edge() {}
          Edge(int v, int c, int f, int next) : v(v), c(c), f(f), next(next) {}
};

struct ISAP{
          int n, s, t;
          int num[maxn], cur[maxn], d[maxn], p[maxn];
          int Head[maxn], cntE;
          int Q[maxn], head, tail;
          Edge edge[maxe];
          void Init(int n){
                    this -> n = n;
                    cntE = 0;
                    CLR(Head, -1);
          }
          void Add(int u, int v, int c){
                    edge[cntE] = Edge(v, c, 0, Head[u]);
                    Head[u] = cntE++;
                    edge[cntE] = Edge(u, 0, 0, Head[v]);
                    Head[v] = cntE++;
          }
          void Bfs(){
                    CLR(d, -1);
                    CLR(num, 0);
                    d[t] = 0;
                    head = tail = 0;
                    Q[tail++] = t;
                    num[0] = 1;
                    while(head != tail){
                              int u = Q[head++];
                              for(int i = Head[u]; ~i; i = edge[i].next){
                                        Edge &e = edge[i];
                                        if(~d[e.v]) continue;
                                        d[e.v] = d[u] + 1;
                                        Q[tail++] = e.v;
                                        num[d[e.v]] ++;
                              }
                    }
          }
          LL Maxflow(int s, int t){
                    this -> s = s;
                    this -> t = t;
                    CPY(cur, Head);
                    Bfs();
                    int u = p[s] = s;
                    LL flow = 0;
                    while(d[s] < n){
                              if(u == t){
                                        int f = INF, neck;
                                        for(int i = s; i != t; i = edge[cur[i]].v){
                                                  if(f > edge[cur[i]].c - edge[cur[i]].f){
                                                            f = edge[cur[i]].c - edge[cur[i]].f;
                                                            neck = i;
                                                  }
                                        }
                                        for(int i = s; i != t; i = edge[cur[i]].v){
                                                  edge[cur[i]].f += f;
                                                  edge[cur[i]^1].f -= f;
                                        }
                                        flow += (LL)f;
                                        u = neck;
                              }
                              int ok = 0;
                              for(int i = cur[u]; ~i; i = edge[i].next){
                                        Edge &e = edge[i];
                                        if(e.c > e.f && d[e.v] + 1 == d[u]){
                                                  ok = 1;
                                                  cur[u] = i;
                                                  p[e.v] = u;
                                                  u = e.v;
                                                  break;
                                        }
                              }
                              if(!ok){
                                        int m = n - 1;
                                        if(--num[d[u]] == 0) break;
                                        for(int i = Head[u]; ~i; i = edge[i].next){
                                                  Edge &e = edge[i];
                                                  if(e.c - e.f > 0 && m > d[e.v]){
                                                            cur[u] = i;
                                                            m = d[e.v];
                                                  }
                                        }
                                        ++num[d[u] = m + 1];
                                        u = p[u];
                              }
                    }
                    return flow;
          }

}solver;

int n, m, sum;
int map[60][60];

bool Judge(int x, int y){
          if(x >= 1 && x <= n && y >= 1 && y <= m)
                    return true;
          return false;
}

void input(){ sum = 0; FOR(i, 1, n) FOR(j, 1, m) scanf("%d", &map[i][j]), sum += map[i][j]; }

void solve(){
          int S = 0, T = n * m + 1;
          solver.Init(n * m + 2);
          FOR(i, 1, n) FOR(j, 1, m)
          if((i + j) & 1){
                    solver.Add(S, (i - 1) * m + j, map[i][j]);
                    REP(k, 0, 4){
                              int dx = i + dir[k][0];
                              int dy = j + dir[k][1];
                              if(Judge(dx, dy)) solver.Add((i - 1) * m + j, (dx - 1) * m + dy, INF);
                    }
          }
          else solver.Add((i - 1) * m + j, T, map[i][j]);
          printf("%d\n", sum - solver.Maxflow(S, T));
}

int main()
{
          //freopen("in.txt", "r", stdin);
          while(~scanf("%d%d", &n, &m)){
                    input();
                    solve();
          }
          return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值