学习 Hybrid Beamforming for Millimeter Wave Systems Using the MMSE Criterion

链接: https://github.com/TianLin0509/Hybrid-Beamforming-for-Millimeter-Wave-Systems-Using-the-MMSE-Criterion.


Author : 林田

摘要:

  1. 首先提出了 ** manifold optimization-based HBF ** algorithm is first proposed, which is directly handled the constant modulus constrains of the analog component and proved its convergence.
  2. For narrowband scenario, propose a low-complexity general eigenvalue decomposition-based HBF algorithm
  3. For broadband scenario, propose three algorithms via the eigenvalue decomposition and orthogonal matching pursuit (正交匹配追踪)

Contributions

  • aiming at minimizing the modified MSE .

在宽带场景下,挑战是 数字预编码 should be optimized for == different subcarriers == while the ** analog one ** is == invariant== for the whole frequency band. (数字需要根据不同的子载波设计,而模拟在整个频带中是保持不变的)。

  1. 分解原始的 sum-MSE 最小化问题为 传输混合预编码 和接受合并设计两个子问题,分析发现两个子问题可以统一为几乎相同的表达式。
  2. 首先针对模拟预编码的常量模约束,采用MO方法。 不同于论文[18] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,”中采用的MO方法最小化混合预编码与全数字预编码之间的Euclidean 距离,本文采用MO直接最小化 sum-MSE。并且推出了更加复杂的Euclidean 共轭梯度。
  3. 为了降低MO算法的复杂度,提出了几个低复杂度的算法,在窄带场景,展现了模拟波束成形可以以 列到列的优化方式采用GEVD(general eigen-decomposition) 方法求解。
  4. 在宽带场景下,求出了原始目标函数的上界与下界,提出了两种基于eigen-decomposition (EVD)的算法。

场景建模

端到端的窄带毫米波MIMO场景:
在这里插入图片描述
通过Nt个发送天线以及Nr个接收天线对Ns个数据流进行传输。Ns X 1 的数据流首先经过基带数字预编码然后通过模拟预编码VRF。

problem Formulation

本文采用最小化MSE作为优化目标:
在这里插入图片描述
这个MSE也被称为 ** modified MSE** ,其中 β \beta β为标量因子,与混合预编码一起优化,物理意义上是将接收到的信号放大/缩小一定的幅度, 使之更接近于原始信号。。 那么为什么要引入 β \beta β这个因子呢?

  • 第一, 在传统的MIMO波束成形研究中, 在设计预编码矩阵的时候, 如果以原始的MSE(无 β \beta β)为目标, 会发现预编码矩阵的设计与噪声能量无关! 这其实不符合MSE的初衷。 而如果引入ββ, 预编码矩阵的解就与噪声能量相关, 也因此可以达到更合理的性能。
  • 第二, 从数学意义上而言, 混合波束成形问题中,需要求解四个矩阵,愈发复杂。 而以传统MSE为目标求解的时候, 考虑发送的功率约束, 需要引入拉格朗日乘子, 这个乘子非常难求,且影响后续对其他矩阵的设计。 而引入 β \beta β后, 后面的推导会证明大大简化了数学求解难度。
  • 第三, 引入 β \beta β后, 可以使得 固定接收端解发送端 和 固定发送端解接收端 两个子问题可以化为完全一致的形式, 也就可以用同样的算法来求解了。
  • (以上分析转载于作者,链接:
    https://blog.csdn.net/weixin_39274659/article/details/108208409).
    在研究点到点的传输系统中,接收端也会有波束赋形的操作,因此scaling也可以视为在接收端完成。通过调整这个参数 β \beta β以获得更好的结果,同时能调整总传输能量约束。
    求解MSE:
    在这里插入图片描述
    可以发现在噪声项中也有参数 β \beta β
    同时模拟预编码端需要满足 每一个元素都要为连续模约束: ∣ [ V R F ] i k ∣ = 1 |[V_{RF}]_{ik}|=1 [VRF]ik=1
    在这里插入图片描述

问题求解

原式中存在五个变量,因此考虑分解为两个子问题。

混合传输设计

首先考虑优化混合预编码以及 β \beta β参数。原始 V B V_B VB可以分解为 V B = β V u V_B=\beta V_u VB=βVu,其中 V U V_U VU是一个没有归一化的基带预编码。固定了W后,可以得到等效信道 H 1 = H H W R F W B H_1=H^H W_RF W_B H1=HHWRFWB

  • 优化算法首先固定 V R F V_{RF} VRF找到最优的数字预编码 V U V_U VU,以及 β \beta β,然后更新目标函数为 V R F V_{RF} VRF,最终进一步通过最小化目标函数以及连续模约束优化 V R F V_{RF} VRF
    在这里插入图片描述
    可以发现第一个约束的等号一定成立,因此可以计算处
    β = ( V R F V U V V H V R F H ) − 1 / 2 \beta=(V_{RF} V_U V_V^H V_{RF}^H)^{-1/2} β=VRFVUVVHVRFH1/2
    利用KKT条件,即将 β \beta β带入到目标函数中求导即可计算 V U V_U VU的封闭式解。带回原式推导得到基于 V R F V_{RF} VRF的MSE表达式
    在这里插入图片描述

流形算法

求导过程

在这里插入图片描述
MO方法:为了能够处理连续模约束,Mo方法可以用于获得局部最优 V R F V_{RF} VRF.。
流行优化也叫黎曼优化。

  • 本质上是一种梯度下降法, 然而基本的梯度下降法是在整个欧式空间中进行下降, 因此无法保证下降后的解仍满足 恒模约束, 所以无法直接用于求解 V R F V_{RF} VRF
  • 而流形优化, 则是首先将满足恒模约束的所有可行解表示为一个流形, 其后每步迭代后都将解映射回这个流形之上, 也因此可以确保结果永远满足恒模约束。
  • 最重要的是, 已经有严谨的数学证明了这样的迭代过程是严格收敛的, 因此可以将 流形优化 理解为 在可行集上进行下降的梯度下降法
  • 要想使用流形优化, 你需要求解目标问题的梯度, 然后就可以在这个框架下用下降法求出一个解了。
    在这里插入图片描述
    步骤4详解:
  • step1: 投影Euclidean梯度到切线空间上以获得Riemannian梯度。
  • step2: 在切线空间中沿着Riemannian梯度寻找最优点,采用Armijo-Goldstein确定步长
  • step3: 将寻找到的最优点缩回到流型中。

然而这个流形算法是基于梯度运算的,因此会产生很高的计算复杂度。

GEVD 方法

对于大尺度MIMO系统, 不同波束流的最优的模拟预编码彼此之间是相互正交的,因此有 V R F H V R F ≈ N t I N R F V_{RF}^H V_{RF} \approx N_t I_{N_{RF}} VRFHVRFNtINRF注意顺序
所以基于 V R F V_{RF} VRF的MSE可以简化为:
J ( V R F ) = t r ( ( I N S + 1 σ 2 w H 1 H V R F V R F H H 1 ) − 1 ) J(V_{RF})=tr((I_{N_S} +\frac{1}{\sigma^2 w}H_1^HV_{RF}V_{RF}^HH_1)^{-1}) J(VRF)=tr((INS+σ2w1H1HVRFVRFHH1)1)
基于这样变化后, V R F V_{RF} VRF能够以列到列的方式优化。定义 V m V_{m} Vm为移除 m m mth矩阵后剩余矩阵。
因此我们可以设定以优化完第第 m m m列剩余的元素进行重新定义,即:
A m = I N S + 1 σ 2 w N t H 1 H V m V m H H 1 A_m =I_{N_S}+\frac{1}{\sigma^2wN_t}H_1^HV_mV_m^HH_1 Am=INS+σ2wNt1H1HVmVmHH1。同时对于
逆矩阵存在一个性质,即对于满矩阵A,以及矩阵为1的矩阵B,满足:
( A + B ) − 1 = A − 1 − A − 1 B A − 1 1 + t r ( A − 1 B ) (A+B)^{-1} =A^{-1}-\frac{A^{-1}BA^{-1}}{1+tr(A^{-1}B)} (A+B)1=A11+tr(A1B)A1BA1
所以:
J ( V R F ) = t r ( ( I N S + 1 σ 2 w H 1 H V m V m H H 1 + 1 σ 2 w H 1 H v m v m H H 1 ) − 1 ) = t r ( ( A m + 1 σ 2 w H 1 H v m v m H H 1 ) − 1 ) = t r ( A m ) − 1 − t r ( 1 σ 2 w ( A m ) − 1 H 1 H v m v m H H 1 ( A m ) − 1 ) 1 + t r ( 1 σ 2 w ( A m ) − 1 H 1 H v m v m H H 1 ) J(V_{RF})=tr((I_{N_S} +\frac{1}{\sigma^2 w}H_1^HV_{m}V_{m}^HH_1+\frac{1}{\sigma^2 w}H_1^Hv_{m}v_{m}^HH_1)^{-1}) \\=tr((A_m+\frac{1}{\sigma^2 w}H_1^Hv_{m}v_{m}^HH_1)^{-1}) \\=tr(A_m)^{-1}-\frac{tr(\frac{1}{\sigma^2 w}(A_m)^{-1}H_1^Hv_{m}v_{m}^HH_1(A_m)^{-1})}{1+tr(\frac{1}{\sigma^2 w}(A_m)^{-1}H_1^Hv_{m}v_{m}^HH_1)} J(VRF)=tr((INS+σ2w1H1HVmVmHH1+σ2w1H1HvmvmHH1)1)=tr((Am+σ2w1H1HvmvmHH1)1)=tr(Am)11+tr(σ2w1(Am)1H1HvmvmHH1)tr(σ2w1(Am)1H1HvmvmHH1(Am)1)
对于矩阵的迹有 t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)
J ( V R F ) = t r ( A m ) − 1 − t r ( v m 1 σ 2 w ( A m ) − 1 H 1 H H 1 ( A m ) − 1 v m H ) 1 + t r ( v m 1 σ 2 w ( A m ) − 1 H 1 H H 1 v m H ) = t r ( A m ) − 1 − t r ( v m U m v m H ) 1 + t r ( v m W m v m H ) J(V_{RF})=tr(A_m)^{-1}-\frac{tr(v_{m}\frac{1}{\sigma^2 w}(A_m)^{-1}H_1^HH_1(A_m)^{-1}v_{m}^H)}{1+tr(v_{m}\frac{1}{\sigma^2 w}(A_m)^{-1}H_1^HH_1v_{m}^H)} \\=tr(A_m)^{-1}-\frac{tr(v_{m}U_mv_{m}^H)}{1+tr(v_{m}W_mv_{m}^H)} J(VRF)=tr(Am)11+tr(vmσ2w1(Am)1H1HH1vmH)tr(vmσ2w1(Am)1H1HH1(Am)1vmH)=tr(Am)11+tr(vmWmvmH)tr(vmUmvmH)
U m = t r ( 1 σ 2 w H 1 ( A m ) − 2 H 1 H ) U_m=tr(\frac{1}{\sigma^2 w}H_1(A_m)^{-2}H_1^H) Um=tr(σ2w1H1(Am)2H1H), W m = 1 + t r ( 1 σ 2 w H 1 ( A m ) − 1 H 1 H ) W_m=1+tr(\frac{1}{\sigma^2 w}H_1(A_m)^{-1}H_1^H) Wm=1+tr(σ2w1H1(Am)1H1H) 可以发现两个都是Hermitian 矩阵。
因此可以固定 V m V_{m} Vm,来对 v m v{m} vm逐次优化——> U m , W m U_m,W_m Um,Wm都是Hermitian矩阵,所以最小化 J ( V R F ) J(V_{RF}) J(VRF)或者说最大化 v m v{m} vm也就是寻找 U m , W m U_m,W_m Um,Wm的最大特征值所对应的最大特征向量。
同时考虑连续模约束,一种有效的方法是只将每个特征向量的幅值提取出来。
在这里插入图片描述

初始化方法

不同于传统的随机初始化,本文中采用了以全数字预编码作为初始值。
整个优化过程从发射端优化,因此可以将接收结合处的预编码作为全书子与编码。 W ( 0 ) W^{(0)} W(0),将这种发放叫为virtual full digital beamformer method(VFD)
值得注意的是,由于VFD初始化方法在一侧假定了虚拟全数字波束形成器,通常不能使用HBF结构直接实现,因此需要至少一次外部迭代来获得两边的混合波束形成器

宽带毫米波系统

在这里插入图片描述
由于毫米波的大型可用带宽,会出现频率选择性衰落。
由于考虑宽带毫米波,要考虑多个载波系统,更为复杂,然而主要思想还是相同的。
目标函数是求解N个子载波的最小总MSE: m i n i m i z e J ( V R F ) = ∑ k = 0 N − 1 J k ( V R F ) minimize J(V_{RF})=\sum_{k=0}^{N-1}J_k(V_{RF}) minimizeJ(VRF)=k=0N1Jk(VRF)
对于比较复杂的优化问题 ,一般采取求解其上界或者下届来寻找近似解。同时为了处理常量模约束,考虑先去掉这个约束,而在最后求解时直接提取其幅值,并加上大规模天线阵中模拟预编码正交特性: V R F H V R F = N t I R F V_{RF}^HV_{RF}=N_tI_{RF} VRFHVRF=NtIRF
在这里插入图片描述

A lower bound (Jensen’s inequality)

琴森不等式:

对于凸函数 F ( X ) F(X) F(X),满足权重参数
a 1 + a 2 + . . . + a n = 1 a_1+a_2+...+a_n=1 a1+a2+...+an=1
,有:
f ( a 1 x 1 + a 2 x 2 + . . . + a n x n ) ≤ a 1 f ( x 1 ) + . . . + a n f ( x n ) f(a_1x_1+a_2x_2+...+a_nx_n) \leq a_1f(x_1)+...+a_nf(x_n) f(a1x1+a2x2+...+anxn)a1f(x1)+...+anf(xn)
ϕ ( ∑ i = 1 n x i a i ) ≤ ∑ i = 1 N s ϕ ( x i ) a i \phi(\sum_{i=1}^nx_ia_i)\leq\sum_{i=1}^{N_s}\phi(x_i)a_i ϕ(i=1nxiai)i=1Nsϕ(xi)ai
所以对于MSE有:
t r ( Q − 1 ) = ∑ i = 1 N s 1 λ i , k = N s 1 N s ∑ i = 1 N s 1 λ i , k ≥ N s ∗ ∑ i = 1 N s 1 1 N s λ i , k = ∑ i = 1 N s N s 2 λ i , k tr(Q^{-1})=\sum_{i=1}^{N_s}\frac1{\lambda_{i,k}}=N_s\frac1{N_s}\sum_{i=1}^{N_s}\frac1{\lambda_{i,k}} \geq N_s*\sum_{i=1}^{N_s}\frac1{\frac1{N_s}\lambda_{i,k}} \\=\sum_{i=1}^{N_s}\frac{N_s^2}{\lambda_{i,k}} tr(Q1)=i=1Nsλi,k1=NsNs1i=1Nsλi,k1Nsi=1NsNs1λi,k1=i=1Nsλi,kNs2
Lamada1: J ( V R F ) ≥ N 2 N s 2 s u m k = 0 N − 1 t r ( Q k ) J(V_{RF})\geq \frac{N^2N_s^2}{sum_{k=0}^{N-1}tr(Q_k)} J(VRF)sumk=0N1tr(Qk)N2Ns2 推导出了下届
因此, instead of the objective function, we devote to minimize the lower bound ,which is equivalent to maximizing the ∑ k = 0 N − 1 t r ( Q k ) {\sum_{k=0}^{N-1}tr(Q_k)} k=0N1tr(Qk)
在这里插入图片描述
可以证明,最优的 V R F V_{RF} VRF ( ∑ k = 0 N − 1 H 1 , k H 1 , k H ) ({\sum_{k=0}^{N-1}H_{1,k}H^H_{1,k}}) (k=0N1H1,kH1,kH)最大的前 N R F N_{RF} NRF个特征向值对应的特征向量的 N t \sqrt {N_t} Nt 倍。
To further make the constant modulus constraint satisfied, we just extract the phase of each element of the optimal N R F N_{RF} NRF

Upper Bound for Minimization (better algorithm) 逆矩阵特征值的性质

Courant-Fischer min-max theorem 极大极小定理

首先,本定理针对的是Hermitian 矩阵, 即共轭对称矩阵。 因为只有共轭对称矩阵的特征值是确定为实数值的
在这里插入图片描述

韦尔定理 Wely theorem

在这里插入图片描述
在这里插入图片描述
这个定理可以推出一些有用的结论:

  • 可以确定两个共轭对称矩阵和 的 特征值的 范围。
  • 一个共轭对称矩阵 加上一个正定共轭对称矩阵, 特征值必增大
矩阵求逆定理(matrix inversion lemma)

( A + B C D ) − 1 = A − 1 − A − 1 B ( D A − 1 B + C − 1 ) − 1 D A − 1 (A+BCD)^{-1}=A^{-1}-A^{-1}B(DA^{-1}B+C^{-1})^{-1}DA^{-1} (A+BCD)1=A1A1B(DA1B+C1)1DA1
了解了以上定理后, 我们开始思考上界参数。

J ( V R F ) = ∑ k = 0 N − 1 t r ( ( I N s + 1 σ 2 w k N t H 1 , k H V R F V R F H H 1 , k ) − 1 ) J(V_{RF})=\sum_{k=0}^{N-1}tr((I_{N_s}+\frac1{\sigma^2w_kN_t}H_{1,k}^HV_{RF}V_{RF}^HH_{1,k})^{-1}) J(VRF)=k=0N1tr((INs+σ2wkNt1H1,kHVRFVRFHH1,k)1)
通过迹的性质可以变形为
J ( V R F ) = ∑ k = 0 N − 1 t r ( V R F H ( I N t + 1 σ 2 w k N t H 1 , k H 1 , k H ) V R F ) − 1 ) J(V_{RF})=\sum_{k=0}^{N-1}tr(V_{RF}^H(I_{N_t}+\frac1{\sigma^2w_kN_t}H_{1,k}H_{1,k}^H)V_{RF})^{-1}) J(VRF)=k=0N1tr(VRFH(INt+σ2wkNt1H1,kH1,kH)VRF)1)
A = I N t + 1 σ 2 w k N t H 1 , k H 1 , k H A=I_{N_t}+\frac1{\sigma^2w_kN_t}H_{1,k}H_{1,k}^H A=INt+σ2wkNt1H1,kH1,kH可以发现中间存在一个类似于 X H A X X^HAX XHAX的项并且满足 X H X = N t I N R F X^HX=N_tI_{N_RF} XHX=NtINRF

Lemma3, ( B H A B ) − 1 特 征 值 小 于 B H A − 1 B (B^HAB)^{-1}特征值小于B^HA^{-1}B (BHAB)1BHA1B

因此提出lamma3 :对于一个 a × a a\times a a×a的正定Hermitan矩阵A,以及随机的 a × b ( a > b ) a\times b (a>b) a×b(a>b)准酉矩阵,满足: B H B = I n B^HB=I_n BHB=In,定义下面两式的特征值:
( B H A B ) − 1 , B H A − 1 B (B^HAB)^{-1},B^HA^{-1}B (BHAB)1,BHA1B
以descending order 排列,有 μ 1 , . . , μ n \mu _1,..,\mu _n μ1,..,μn λ 1 , . . . , λ n \lambda _1,...,\lambda _n λ1,...,λn。有 μ k ≤ λ k \mu _k\leq \lambda_k μkλk
证明:

  • Courant-Fisher min-max theorem
    在这里插入图片描述
    在这里插入图片描述
  • Jensen’s 不等式:
    x H x x H A x ≤ x H A − 1 x x H x \frac{x^Hx}{x^HAx}\leq\frac{x^HA^{-1}x}{x^Hx} xHAxxHxxHxxHA1x
    ( ϕ ( ∑ i = 1 n x i a i ) ≤ ∑ i = 1 N s ϕ ( x i ) a i \phi(\sum_{i=1}^nx_ia_i)\leq\sum_{i=1}^{N_s}\phi(x_i)a_i ϕ(i=1nxiai)i=1Nsϕ(xi)ai)
    J ( V R F ) = ∑ k = 0 N − 1 t r ( V R F H ( A ) V R F ) − 1 ) ≤ ∑ k = 0 N − 1 t r ( V R F H ( A ) − 1 V R F ) = t r ( V R F ( ∑ k = 0 N − 1 H ( A ) − 1 ) V R F ) J(V_{RF})=\sum_{k=0}^{N-1}tr(V_{RF}^H(A)V_{RF})^{-1}) \\\leq\sum_{k=0}^{N-1}tr(V_{RF}^H(A)^{-1}V_{RF}) \\=tr(V_{RF}(\sum_{k=0}^{N-1}H(A)^{-1})V_{RF}) J(VRF)=k=0N1tr(VRFH(A)VRF)1)k=0N1tr(VRFH(A)1VRF)=tr(VRF(k=0N1H(A)1)VRF)
    第二个等号是考虑模拟预编码在N个子载波中是相同的。
  • 矩阵求逆定理
    A − 1 = ( I N t + 1 σ 2 w k N t H 1 , k H 1 , k H ) − 1 = I N t − 1 σ 2 w k N t H 1 , k ( 1 σ 2 w k N t H 1 , k H H 1 , k + I N t ) − 1 H 1 , k H ) = I N t − G k A^{-1}=(I_{N_t}+\frac1{\sigma^2w_kN_t}H_{1,k}H_{1,k}^H)^{-1} \\=I_{N_t}-\frac1{\sigma^2w_kN_t}H_{1,k}(\frac1{\sigma^2w_kN_t}H_{1,k}^HH_{1,k}+I_{N_{t}})^{-1}H_{1,k}^H) \\=I_{N_t}-G_k A1=(INt+σ2wkNt1H1,kH1,kH)1=INtσ2wkNt1H1,k(σ2wkNt1H1,kHH1,k+INt)1H1,kH)=INtGk
    在这里插入图片描述
  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值