✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
在毫米波通信系统中,混合预编码是一种有效的技术,用于克服大气传输和多径效应对信号传输的影响。混合预编码通过利用多个天线的干涉效应来提高系统的传输性能。
交替最小化算法是一种常用的优化算法,用于求解非线性问题。在毫米波系统中,交替最小化算法被广泛应用于混合预编码的优化问题中。该算法通过交替地更新预编码矩阵和数据传输矩阵,以最小化传输误差。
混合预编码的交替最小化算法的基本步骤如下:
-
初始化预编码矩阵和数据传输矩阵。
-
根据当前的预编码矩阵,计算数据传输矩阵。
-
根据当前的数据传输矩阵,更新预编码矩阵。
-
重复步骤2和步骤3,直到满足收敛条件。
在每一次迭代中,交替最小化算法通过不断更新预编码矩阵和数据传输矩阵,逐渐降低传输误差,从而提高系统的传输性能。
混合预编码的交替最小化算法在毫米波通信系统中具有重要的应用价值。通过优化预编码矩阵和数据传输矩阵,可以最大程度地提高系统的传输速率和可靠性。这对于实现高速、高容量的毫米波通信具有重要意义。
总结起来,混合预编码的交替最小化算法是毫米波通信系统中的一种重要技术。通过不断优化预编码矩阵和数据传输矩阵,可以提高系统的传输性能,实现高速、高容量的毫米波通信。这种算法在未来的通信技术发展中将发挥重要作用。
⛄ 部分代码
clear,clc
%Nt = 144;
%Nr = 16;
%Ns = 4;
%NRF = 4;
Nt = 144;
Nr = 36;
Ns = 8;
NRF = 12;
SNR_dB = -40:5:0;
SNR = 10.^(SNR_dB./10);
realization = 200;
smax = length(SNR); % enable the parallel
Nc = 30;
c = 1/sqrt(Nc)*exp(1i*[0:2*pi/Nc:2*pi-2*pi/Nc])';
C = kron(eye(NRF),c);
%parfor reali = 1:realization
for reali = 1:realization
reali
[ H,At,Ar,Fopt,Wopt ] = channel_realization(Nt,Nr,Ns);
[ FRFA, FBBA ] = AE_AltMin( Fopt, NRF);
FBBA = sqrt(Ns) * FBBA / norm(FRFA * FBBA,'fro');
[ WRFA, WBBA ] = AE_AltMin( Wopt, NRF);
[ FRFO, FBBO ] = OMP( Fopt, NRF, At);
FBBO = sqrt(Ns) * FBBO / norm(FRFO * FBBO,'fro');
[ WRFO, WBBO ] = OMP( Wopt, NRF, Ar);
[ FRF, FBB ] = my_AltMin_new( Fopt, C);
FBB = sqrt(Ns) * FBB / norm(FRF * FBB,'fro');
[ WRF, WBB ] = my_AltMin_new( Wopt, C);
for s = 1:smax
RA(s,reali) = log2(det(eye(Ns) + SNR(s) * pinv(WRFA*WBBA) * H * FRFA * FBBA * FBBA' * FRFA' * H' * WRFA*WBBA));
ROM(s,reali) = log2(det(eye(Ns) + SNR(s) * pinv(WRFO*WBBO) * H * FRFO * FBBO * FBBO' * FRFO' * H' * WRFO*WBBO));
R(s,reali) = log2(det(eye(Ns) + SNR(s) * pinv(WRF*WBB) * H * FRF * FBB * FBB' * FRF' * H' * WRF*WBB));
RO(s,reali) = log2(det(eye(Ns) + SNR(s) * pinv(Wopt) * H * Fopt * Fopt' * H' * Wopt));
end
end
plot(SNR_dB,sum(RO,2)/realization,'r-o','LineWidth',1.5);
hold on
grid on
plot(SNR_dB,sum(R,2)/realization,'m-^','LineWidth',1.5);
plot(SNR_dB,sum(RA,2)/realization,'Marker','>','Color',[0 0.498039215803146 0],'LineWidth',1.5);
plot(SNR_dB,sum(ROM,2)/realization,'b-v','LineWidth',1.5);
legend('Fully digital','Proposed FPS-AltMin','MO-AltMin [3]','OMP [2]')
⛄ 运行结果
⛄ 参考文献
[1] Xianghao Yu, et al. "Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems " IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 3, APRIL 2016
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合