算法原理:假设带有孔的空间曲面,其外轮廓顺时针转动,内轮廓逆时针转动,那么沿着曲线的方向前进,轮廓的内部始终在我们的右手边。那么如何确定点是在我们的左侧还是右侧呢?可按如下步骤进行:
1. 获取该点的法向,由内向外,或由下向上,什么是上呢?就是从人的脚指向头(倒立的除外)
2.将被判断的点投影到与法向垂直的面上,该平面通过曲线上引出法向的那一点,并连接投影点与法向量的原点,作为投影向量。
3.确定前进方向的向量,可以通过前后相邻两点的方向作为前进方向。
4.求解前进向量与投影向量的叉乘。
5.在将叉乘的结果与法向量进行点乘,如果结果为正,则在曲线外侧,如果为负,则在曲线内测。
下面为程序的一些代码:
//计算两向量的叉乘
void _cross(Point* vec1, Point* vec2, Point* res)
{
res->x = vec1->y*vec2->z - vec1->z*vec2->y;
res->y = vec1->z*vec2->x - vec1->x*vec2->z;
res->z = vec1->x*vec2->y - vec1->y*vec2->x;
}
//计算量向量的点乘
double _dot(Point* vec1, Point* vec2)
{
return vec1->x*vec2->x + vec1->y*vec2->y + vec1->z*vec2->z;
}
//计算一点沿某一方向的投影
bool _projectPoint(const Point* orgin, const Point* pt, Point* res)
{
if (0 == orgin->i && 0 == orgin->j && 0 == orgin->k)
return false;
double numer =
(orgin->i)*(orgin->x - pt->x) +
(orgin->j)*(orgin->y - pt->y) +
(orgin->k)*(orgin->z - pt->z);
double deno = pow(orgin->i, 2) + pow(orgin->j, 2) + pow(orgin->k, 2);
double t = numer / deno;
res->x = (orgin->i)*t + pt->x;
res->y = (orgin->j)*t + pt->y;
res->z = (orgin->k)*t + pt->z;
return true;
}
//判断在轮廓的内部还是外部,内部为-1,外部为1
double _inOrOut(Point* orgin, Point* npt, Point* rpt)
{
//理论轮廓方向
Point dir1 = *npt - *orgin;
//实际轮廓方向
Point dir2 = *rpt - *orgin;
//计算两向量的叉乘
Point crossp;
_cross(&dir1, &dir2, &crossp);
Point normal(orgin->i, orgin->j, orgin->k);
double val = _dot(&normal, &crossp);
if (val > 0.0)
return 1.0;
else
return -1.0;
}