1319. 连通网络的操作次数

该博客介绍了一种使用并查集数据结构解决计算机网络连通性问题的方法。给定n台计算机和它们的初始连接线缆,目标是通过最少的操作次数使所有计算机都能互相通信。解题策略是通过并查集合并连通的计算机,并计算多余的线缆和连通域数量,从而得出最小操作次数。若无法实现所有计算机连通,则返回-1。
摘要由CSDN通过智能技术生成

题目描述:用以太网线缆将 n 台计算机连接成一个网络,计算机的编号从 0 到 n-1。线缆用 connections 表示,其中 connections[i] = [a, b] 连接了计算机 a 和 b。
网络中的任何一台计算机都可以通过网络直接或者间接访问同一个网络中其他任意一台计算机。
给你这个计算机网络的初始布线 connections,你可以拔开任意两台直连计算机之间的线缆,并用它连接一对未直连的计算机。请你计算并返回使所有计算机都连通所需的最少操作次数。如果不可能,则返回 -1 。
解题思路:通过并查集对图中的计算机进行合并,找到多余的线和连通域的个数,即可得到最后结果

class Solution:
    def makeConnected(self, n: int, connections: List[List[int]]) -> int:
        father = list(range(n))
        moreline = 0
        def find(x):
            root = x
            while(root != father[root]):
                root = father[root]
            while(x != root):
                origin_r = father[x]
                father[x] = root
                x = origin_r
            return root
        
        def union(x, y):
            rx, ry = find(x), find(y)
            if rx == ry:
                return True
            father[rx] = ry
            return False
        
        for c1, c2 in connections:
            if union(c1, c2):
                moreline += 1
        
        numop = len(set([find(f) for f in father])) - 1
        return numop if numop <= moreline else -1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值