- 查询tapply的函数帮助信息,并用帮助文件中的案例进一步学习(自己给一个新的例子).
require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
tapply(groups, groups, length)
table(groups)
- 把user.txt数据中的性别、年龄、身高分别输入到S中。计算不同性别、不同年龄的人数,并计算每一组的平均身高。把这些变量组合成一个列表。把user.txt数据输入为S的数据框.
s <- read.table("./user.txt",header = TRUE)
head(s)
library(plyr)
ss <- ddply(s,.(Sex,Age),function(df){
count <- length(df$Height)
promean <- mean(df$Height)
c(count,promean)
})
names(ss)[3:4] <- c("count","mean")
ss
- 把语句x <- floor(2*runif(100))所生成的向量保存到一个文本文件中,数据项分别用空格和换行分隔。然后从此文件中读入数据到向量y中。
x <- floor(2*runif(100))
cat(x, "\n", sep=" ", file = "./qu3.txt")
read.table("./qu3.txt")
- 对2中的数据框按照年龄变量重新排序,然后将新的数据框输出到usersorted.txt 中去
data <- s[order(s$Age),]
head(data)
write.table(data, "./usersorted.txt")