多元函数微分学的几何应用主要是讲述空间向量与微分学的融合,包括:空间曲线的切线和空间曲面的切平面。如果将本文和之前的“空间向量”一文结合起来看,你会发现多元函数微分学与空间向量结合后的神奇。
一、空间曲线的切线
1,空间曲线的参数方程
在“空间向量”一文中提到:空间曲线可以看作是两个空间曲面的交线,可以用一个方程组来描述
{
F(x,y,z)=0G(x,y,z)=0
也可以用参数方程来描述
⎧⎩⎨⎪⎪x=x(t)y=y(t)z=z(t)
细思一下,用方程组描述表示“交线”,这个比较容易理解,那么为什么能用一元的参数方程组来描述呢?
事实上,可以用普通方程通过如下方式推导出参数方程
先假设存在 x=x(t) ,代入那个普通方程组,可以用消元法,分别解出
{
y=y(t)z=z(t)
2,参数方程的切线
一元函数的导数在几何上表示平面曲线在某点的切线的斜率,反过来推广,空间曲线的切线斜率也可以用导数来表示。现在来看空间曲线的切线,它同样可以表示为割线的极限,而割线则表示两点间的连线,很容易用向量来表示,如下
τ⃗ =limM→M0MM0→=limt→t0(x(t)−x(t0)t−t0,y(t)−y(t0)t−t0,