用Python学《微积分B》(多元微分学的几何应用)

本文探讨了多元函数微分学的几何应用,重点关注空间曲线的切线和空间曲面的切平面。通过参数方程和隐函数方程组求导,阐述了如何确定空间曲线的切线方程以及空间曲面的切平面方程,揭示了微分学在几何中的奇妙应用。
摘要由CSDN通过智能技术生成


  多元函数微分学的几何应用主要是讲述空间向量与微分学的融合,包括:空间曲线的切线和空间曲面的切平面。如果将本文和之前的“空间向量”一文结合起来看,你会发现多元函数微分学与空间向量结合后的神奇。


一、空间曲线的切线


1,空间曲线的参数方程
  在“空间向量”一文中提到:空间曲线可以看作是两个空间曲面的交线,可以用一个方程组来描述

{ F(x,y,z)=0G(x,y,z)=0

  也可以用参数方程来描述
x=x(t)y=y(t)z=z(t)

  细思一下,用方程组描述表示“交线”,这个比较容易理解,那么为什么能用一元的参数方程组来描述呢?
  事实上,可以用普通方程通过如下方式推导出参数方程
  先假设存在 x=x(t) ,代入那个普通方程组,可以用消元法,分别解出
{ y=y(t)z=z(t)

2,参数方程的切线
  一元函数的导数在几何上表示平面曲线在某点的切线的斜率,反过来推广,空间曲线的切线斜率也可以用导数来表示。现在来看空间曲线的切线,它同样可以表示为割线的极限,而割线则表示两点间的连线,很容易用向量来表示,如下
τ⃗ =limMM0MM0=limtt0(x(t)x(t0)tt0,y(t)y(t0)tt0,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值