基于python分析微信好友的性别分布,区域分布,词云分析,头像拼接

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

colors=colors,

labeldistance=1.1,

autopct=‘%3.1f%%’,

shadow=False,

startangle=90,

pctdistance=0.6

)

plt.legend(loc=‘upper right’, )

plt.title(u’%s的微信好友性别组成’ % friends[0][‘NickName’])

plt.show()

2.微信好友头像分析

==========

分析好友头像,从两个方面来分析,第一,在这些好友头像中,使用人脸头像的好友比重有多大;第二,从这些好友头像中,可以提取出哪些有价值的关键字。这里需要根据HeadImgUrl字段下载头像到本地,然后通过腾讯优图提供的人脸识别相关的API接口,检测头像图片中是否存在人脸以及提取图片中的标签。其中,前者是分类汇总,我们使用饼图来呈现结果;后者是对文本进行分析,我们使用词云来呈现结果。

通过者篇文章从微信头像看出你的性格

  • 没太刻意选择过的生活照作头像

这类人对自己的接纳度比较高,对外貌也比较有自信,不一定长得好看,但是能接纳自己的本来面目。内心没藏太多秘密,也没做过什么见不得人的事儿,在网络世界和现实世界中差别不大。

  • 用风景美图作头像

这种人通常为人比较成熟,人缘很好,很注重人际关系的和谐。

仅供参考,从我的分布图

微信头像分布图

微信头像分布图

不过可以注意到,在所有微信好友中,约有接近1/4的微信好友使用了人脸头像, 而有接近3/4的微信好友没有人脸头像,这说明在所有微信好友中对”颜值 “有自信的人,仅仅占到好友总数的25%,或者说75%的微信好友行事风格偏低调为主,不喜欢用人脸头像做微信头像。这是否说明”好看的皮囊”并非是千篇一律,长得好看的人实在是少数中的少数。所以,当女生的妆容越来越向着”韩式半永久粗平眉”、”瓜子脸”和”大红唇”靠拢的时候,当男生的服饰越来越向着”大背头”、”高领毛衣”和”长款大衣”靠拢的时候,我们能不能真正得个性一次。生命中有太多被世俗绑架着的事情,既要和别人不一样 ,同时还要和大多数人一样,这是人生在世的无可奈何。考虑到腾讯优图并不能真正得识别”人脸”,我们这里对好友头像中的标签再次进行提取,来帮助我们了解微信好友的头像中有哪些 关键词,其分析结果如图所示:

微信头像词云分布图

微信头像词云分布图

你瞧!除了女孩,女孩,男孩,合影,合影还有天空,大海,卡通画嘛

def analyseHeadImage(frineds):

Init Path

basePath = os.path.abspath(‘.’)

baseFolder = basePath + ‘\HeadImages\’

if(os.path.exists(baseFolder) == False):

os.makedirs(baseFolder)

Analyse Images

faceApi = FaceAPI()

use_face = 0

not_use_face = 0

image_tags = ‘’

for index in range(1,len(friends)):

friend = friends[index]

Save HeadImages

imgFile = baseFolder + ‘\Image%s.jpg’ % str(index)

imgData = itchat.get_head_img(userName = friend[‘UserName’])

if(os.path.exists(imgFile) == False):

with open(imgFile,‘wb’) as file:

file.write(imgData)

Detect Faces

time.sleep(1)

result = faceApi.detectFace(imgFile)

if result == True:

use_face += 1

else:

not_use_face += 1

Extract Tags

result = faceApi.extractTags(imgFile)

image_tags += ‘,’.join(list(map(lambda x:x[‘tag_name’],result)))

labels = [u’使用人脸头像’,u’不使用人脸头像’]

counts = [use_face,not_use_face]

colors = [‘red’,‘yellowgreen’,‘lightskyblue’]

plt.figure(figsize=(8,5), dpi=80)

plt.axes(aspect=1)

plt.pie(counts, #性别统计结果

labels=labels, #性别展示标签

colors=colors, #饼图区域配色

labeldistance = 1.1, #标签距离圆点距离

autopct = ‘%3.1f%%’, #饼图区域文本格式

shadow = False, #饼图是否显示阴影

startangle = 90, #饼图起始角度

pctdistance = 0.6 #饼图区域文本距离圆点距离

)

plt.legend(loc=‘upper right’,)

plt.title(u’%s的微信好友使用人脸头像情况’ % friends[0][‘NickName’])

plt.show()

image_tags = image_tags.encode(‘iso8859-1’).decode(‘utf-8’)

back_coloring = np.array(Image.open(‘face.jpg’))

wordcloud = WordCloud(

font_path=‘simfang.ttf’,

background_color=“white”,

max_words=1200,

mask=back_coloring,

max_font_size=75,

random_state=45,

width=800,

height=480,

margin=15

)

wordcloud.generate(image_tags)

plt.imshow(wordcloud)

plt.axis(“off”)

plt.show()

3.微信好友签名分析

==========

分析好签名,签名是好友信息中最为丰富的文本信息,按照人类惯用的”贴标签”的方法论,签名可以分析出某一个人在某一段时间里状态,就像人开心了会笑、哀伤了会哭,哭和笑两种标签,分别表明了人开心和哀伤的状态。这里我们对签名做两种处理,第一种是使用用结巴分词进行分词后生成词云,目的是了解好友签名中的关键字有哪些,哪一个关键字出现的频率相对较高;第二种是使用SnowNLP分析好友签名中的感情倾向,即好友签名整体上是表现为正面的、负面的还是中立的,各自的比重是多少。这里提取Signature字段即可

image

image

通过词云,我们可以发现:在微信好友的签名信息中,出现频率相对较高的关键词有:人生,生命,努力、前行,战略,坚强,美丽。果然我的微信好友都是温暖、正直的好青年啊! 其实,签名这个设定,从某种程度上是在反映人的一种心态,人在年轻时不免”为赋新词强说愁”,等到你真正到了这个精神境界,突然发现年轻时图样图森破,或许这就是我们不愿意让别人了解过去的原因,因为伴随着人的成长,某一种瞬间的状态简直不忍直视,QQ空间陪伴了我们这代人的整个青春,令人印象深刻的”那年今日”功能,有时让我们感到回忆的温暖,有时让我们感到岁月的萧杀,”当时只道是寻常”的物是人非,”回首向来萧瑟处”的淡定从容,”今夕复何夕”的失落惆怅……都在这一行行签名里留下深深浅浅的印记。在知乎上有关于签名的话题讨论,对此感兴趣的朋友不妨找时间看看。:

image

image

通过柱状图,我们可以发现:在微信好友的签名信息中,正面积极的情感判断约占到55.56%,中立的情感判断约占到32.10%,负面消极的情感判断约占到12.35%。这个结果和我们通过词云展示的结果基本吻合,这说明在微信好友的签名信息中,约有87.66%的签名信息,传达出来都是一种积极向上的态度。朋友圈中基本上有两类用户,第一类用户使用朋友圈记录自己的生活,第二类用户使用朋友圈输出自己的观点。显然,对于第二类用户,它并不介意别人了解它的过去,它更在乎它从始至终输出的观点是否一致。所以,不管朋友圈里别人在或晒美食、或晒旅游、或秀恩爱、或晒宝宝、或煲鸡汤等等,在我看来这都是一种生活方式,精神层次和物质层次比你高的人群,觉得你朋友圈里的内容”无趣”,这是符合人类一贯的认知方式的,在大多数情况下,反而是那些和你层次差不多的人群,对不熟悉的人或者事物妄加判断,如果你不喜欢我朋友圈里的内容,请直接屏蔽我就好,因为这样我们还可以做朋友;如果你因为喜欢A而在我这里和我说B不好,这就真的是三观不合啦。我相信没有完全兴趣匹配的两个人,即使是男女朋友或者情侣之间,总之人与人相处嘛,真诚和互相尊重是基本要求。

代码附上:

def analyseSignature(friends):

signatures = ‘’

emotions = []

pattern = re.compile(“1f\d.+”)

for friend in friends:

signature = friend[‘Signature’]

if(signature != None):

signature = signature.strip().replace(‘span’, ‘’).replace(‘class’, ‘’).replace(‘emoji’, ‘’)

signature = re.sub(r’1f(\d.+)‘,’',signature)

if(len(signature)>0):

nlp = SnowNLP(signature)

emotions.append(nlp.sentiments)

signatures += ’ '.join(jieba.analyse.extract_tags(signature,5))

with open(‘signatures.txt’,‘wt’,encoding=‘utf-8’) as file:

file.write(signatures)

Sinature WordCloud

back_coloring = np.array(Image.open(‘flower.jpg’))

wordcloud = WordCloud(

font_path=‘simfang.ttf’,

background_color=“white”,

max_words=1200,

mask=back_coloring,

max_font_size=75,

random_state=45,

width=960,

height=720,

margin=15

)

wordcloud.generate(signatures)

plt.imshow(wordcloud)

plt.axis(“off”)

plt.show()

wordcloud.to_file(‘signatures.jpg’)

Signature Emotional Judgment

count_good = len(list(filter(lambda x:x>0.66,emotions)))

count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))

count_bad = len(list(filter(lambda x:x<0.33,emotions)))

labels = [u’负面消极’,u’中性’,u’正面积极’]

values = (count_bad,count_normal,count_good)

plt.rcParams[‘font.sans-serif’] = [‘simHei’]

plt.rcParams[‘axes.unicode_minus’] = False

plt.xlabel(u’情感判断’)

plt.ylabel(u’频数’)

plt.xticks(range(3),labels)

plt.legend(loc=‘upper right’,)

plt.bar(range(3), values, color = ‘rgb’)

plt.title(u’%s的微信好友签名信息情感分析’ % friends[0][‘NickName’])

plt.show()

4.微信好友分布

========

分析好友位置,主要通过提取Province和City这两个字段。本来想用pyecharts来实现,但是由于最近政策原因不能导出地图,参照网上的一些意见发现BDP在线制图非常好用,0编程门槛,拖拽使用,一键下载,所以首先将数据存储在csv上传到这个在线制图网站。

微信好友全国分布图

微信好友全国分布图

微信好友省份分布图

微信好友省份分布图

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
sdnimg.cn/d29631674929476f9c3b30f7ff58dff0.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ZlaTM0Nzc5NTc5MA==,size_16,color_FFFFFF,t_70)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-6I05wM1A-1713241803489)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值