实变函数精解【10】

点集

基础

  • 设 f ( x ) 定义在 R n 上,则 f ∈ C ( R n ) 的充要条件是对任意的 t ∈ R , 点集 E 1 = { x ∈ R n : f ( x ) ≥ t } , E 2 = { x ∈ R n : f ( x ) ≤ t } 都是闭集 设f(x)定义在R^n上,则f \in C(R ^n)的充要条件是对任意的t \in R, \\点集E_1=\{x \in R^n:f(x) \ge t \},E_2=\{x \in R^n:f(x) \le t\}都是闭集 f(x)定义在Rn上,则fC(Rn)的充要条件是对任意的tR点集E1={xRn:f(x)t},E2={xRn:f(x)t}都是闭集
    证明: 1. 充分性 ( 1 ) f ∈ C ( R n ) ,则有 x 1 ∈ E 1 , ∀ ϵ > 0 , ∃ δ > 0 x ∈ E 1 ∩ B ( x 1 , δ ) 时,有 ∣ f ( x ) − f ( x 1 ) ∣ < ϵ ( 2 ) ∀ t ∈ R ,对于集合 { t i : t i ∈ R } 中的每个元素 t i ,都有 f i ( x ) ≥ t i ,且 f i ∈ C ( R n ) 对于所有 x 0 ∈ E 1 ,使 f i ( x ) ≥ t i , 函数 f i ( x ) 在点 x 0 处连续, 函数 f i 在其定义域 E 1 内的每一个点都连续。 所以存在 δ > 0 , x 0 ∈ E 1 , 使得 E 1 ∩ ( B ( x 0 , δ ) \ { x 0 } ) ≠ ∅ , x 0 ∈ E 1 ′ , E 1 ⊃ E 1 ′ 也可反证:如果 E 1 ∩ ( B ( x 0 , δ ) \ { x 0 } ) = ∅ , x 0 ∈ E 1 ′ , E 1 ⊉ E 1 ′ , 函数 f i 在 x 0 处不连续,矛盾。 ( 3 ) E 2 同理可证。 2. 必要性 E 1 , E 2 都是闭集, E 1 ⊃ E 1 ′ , E 2 ⊃ E 2 ′ ( 1 )任意的 t i ∈ R , ∃ δ > 0 , x 0 ∈ E 1 ′ , x ∈ E 1 ∩ ( B ( x 0 , δ ) \ { x 0 } ) 时, 使 f i ( x ) ≥ t i , 有 ∣ f i ( x ) − f i ( x 0 ) ∣ < ϵ , 函数 f i ( x ) 在点 x 0 处连续 ( 2 ) E 2 同理可证。 另一种证法 1. 必要性 互异点列 { x k } ⊂ E 1 , k → ∞ 时 , x k → x 0 , x 0 ∈ E 1 ′ f ( x ) ≥ t , ∀ t ∈ R , f ( x ) 的连续性 f ( x 0 ) = lim ⁡ k → ∞ f ( x k ) ≥ t x 0 ∈ E 1 2. 充分性 x 0 ∈ E 1 , f ∈ C ( R n ) x ∈ E 1 ∩ B ( x 0 , δ ) , ∣ f ( x ) − f ( x 0 ) ∣ < ϵ 互异点列 { x k } ⊂ E 1 , f ( x k ) ≥ t 有 lim ⁡ k → ∞ ∣ x k − x 0 ∣ = 0 , x 0 ∈ E 1 ′ 也可反证: x 0 不是 f ( x ) 的连续点, x 0 ∈ R n ϵ 0 > 0 , 互异点列 { x k } , k → ∞ 时 , x k → x 0 对每一个 k ,有 f ( x k ) ≤ f ( x 0 ) − ϵ 0 或者 f ( x k ) ≥ f ( x 0 ) − ϵ 0 我们取 f ( x k ) ≤ f ( x 0 ) − ϵ 0 , t = f ( x 0 ) − ϵ 0 , 则 x k ∈ E 2 , x 0 ∉ E 2 , 与 E 2 是闭集矛盾。 证明:1.充分性 \\(1)f \in C(R ^n),则有x_1 \in E_1,\forall \epsilon \gt 0,\exist \delta \gt 0 \\x \in E_1 \cap B(x_1,\delta)时,有|f(x)-f(x_1)| \lt \epsilon \\(2)\forall t \in R,对于集合\{t_i:t_i \in R\}中的每个元素t_i,都有f_i(x)\ge t_i,且f_i \in C(R ^n) \\对于所有x_0 \in E_1,使f_i(x)\ge t_i,函数f_i(x)在点x_0处连续, \\函数f_i在其定义域E_1内的每一个点都连续。 \\所以存在\delta \gt 0,x_0 \in E_1,使得E_1\cap (B(x_0,\delta)\backslash \{x_0\}) \ne \emptyset,x_0 \in E_1',E_1 \supset E_1' \\也可反证:如果E_1\cap (B(x_0,\delta)\backslash \{x_0\}) = \emptyset,x_0 \in E_1',E_1 \nsupseteq E_1', \\函数f_i在x_0处不连续,矛盾。 \\(3)E_2同理可证。 \\2.必要性 \\E_1,E_2都是闭集,E_1 \supset E_1',E_2 \supset E_2' \\(1)任意的t_i\in R,\exist \delta \gt 0, \\x_0\in E_1',x \in E_1\cap (B(x_0,\delta)\backslash \{x_0\})时, \\使f_i(x)\ge t_i,有|f_i(x)-f_i(x_0)| \lt \epsilon,函数f_i(x)在点x_0处连续 \\(2)E_2同理可证。 \\另一种证法 \\1.必要性 \\互异点列\{x_k\}\subset E_1,k\rightarrow \infty时,x_k\rightarrow x_0,x_0 \in E_1' \\f(x) \ge t,\forall t \in R,f(x)的连续性 \\f(x_0)=\lim_{k\rightarrow \infty}f(x_k)\ge t \\x_0 \in E_1 \\2.充分性 \\x_0 \in E_1,f \in C(R ^n) \\x \in E_1 \cap B(x_0,\delta),|f(x)-f(x_0)| \lt \epsilon \\互异点列\{x_k\}\subset E_1,f(x_k)\ge t \\有\lim_{k\rightarrow\infty}\mid x_k-x_0\mid=0,x_0 \in E_1' \\也可反证:x_0不是f(x)的连续点,x_0 \in R^n \\\epsilon_0 \gt 0, 互异点列\{x_k\},k\rightarrow \infty时,x_k\rightarrow x_0 \\对每一个k,有 \\f(x_k) \le f(x_0)-\epsilon_0或者f(x_k) \ge f(x_0)-\epsilon_0 \\我们取f(x_k) \le f(x_0)-\epsilon_0,t=f(x_0)-\epsilon_0,则 x_k \in E_2,x_0 \notin E_2, \\与E_2是闭集矛盾。 证明:1.充分性(1)fC(Rn),则有x1E1,ϵ>0,δ>0xE1B(x1,δ)时,有f(x)f(x1)<ϵ(2)tR,对于集合{ti:tiR}中的每个元素ti,都有fi(x)ti,且fiC(Rn)对于所有x0E1,使fi(x)ti,函数fi(x)在点x0处连续,函数fi在其定义域E1内的每一个点都连续。所以存在δ>0,x0E1,使得E1(B(x0,δ)\{x0})=,x0E1,E1E1也可反证:如果E1(B(x0,δ)\{x0})=,x0E1,E1E1函数fix0处不连续,矛盾。(3)E2同理可证。2.必要性E1,E2都是闭集,E1E1,E2E21)任意的tiRδ>0,x0E1xE1(B(x0,δ)\{x0})时,使fi(x)ti,fi(x)fi(x0)<ϵ,函数fi(x)在点x0处连续(2)E2同理可证。另一种证法1.必要性互异点列{xk}E1,k,xkx0,x0E1f(x)t,tR,f(x)的连续性f(x0)=klimf(xk)tx0E12.充分性x0E1,fC(Rn)xE1B(x0,δ)f(x)f(x0)<ϵ互异点列{xk}E1,f(xk)tklimxkx0∣=0,x0E1也可反证:x0不是f(x)的连续点,x0Rnϵ0>0,互异点列{xk},k,xkx0对每一个k,有f(xk)f(x0)ϵ0或者f(xk)f(x0)ϵ0我们取f(xk)f(x0)ϵ0,t=f(x0)ϵ0,xkE2x0/E2E2是闭集矛盾。
  • 设 f ∈ C ( R ) , 则 F = { ( x , y ) : f ( x ) ≥ y } 是 R 2 中的闭集 设f \in C(R),则F=\{(x,y):f(x)\ge y\}是R^2中的闭集 fC(R),F={(x,y):f(x)y}R2中的闭集
    证明: 1. z 0 = ( x 0 , y 0 ) ∈ R 2 , E = { x : f ( x ) ≥ y , x , y ∈ R } 2. ∀ ϵ > 0 , ∃ δ > 0 , x 0 ∈ E x ∈ E ∩ B ( x 0 , δ ) 时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ϵ f 在 R 中连续 , f ( x 0 ) ≥ y 0 3. F 中互异点列 { z k } = { ( x k 1 , y k 2 ) } lim ⁡ k 1 → ∞ , k 2 → ∞ ∣ ( x k 1 , y k 2 ) − ( x 0 , y 0 ) ∣ = 0 z 0 ∈ R 2 的导集 ⊂ R 2 证明:1.z_0 =(x_0,y_0) \in R^2,E=\{x:f(x)\ge y,x,y \in R\} \\2.\forall \epsilon \gt 0,\exist \delta \gt 0,x_0 \in E\\x \in E \cap B(x_0,\delta)时,有|f(x)-f(x_0)| \lt \epsilon \\f 在R中连续,f(x_0)\ge y_0 \\3.F中互异点列\{z_k\}=\{(x_{k_1},y_{k_2})\} \\\lim_{k_1\rightarrow\infty,k_2\rightarrow\infty}|(x_{k_1},y_{k_2})-(x_0,y_0)|=0 \\z_0 \in R^2的导集 \subset R^2 证明:1.z0=(x0,y0)R2E={x:f(x)y,x,yR}2.∀ϵ>0,δ>0,x0ExEB(x0,δ)时,有f(x)f(x0)<ϵfR中连续,f(x0)y03.F中互异点列{zk}={(xk1,yk2)}k1,k2lim(xk1,yk2)(x0,y0)=0z0R2的导集R2
  • 设 F ⊂ R 是闭集,试作: f : R → R , 使 f ( x ) 的不连续点集是 F 。 设F\subset R是闭集,试作:f:R\rightarrow R,使f(x)的不连续点集是F。 FR是闭集,试作:f:RR,使f(x)的不连续点集是F
    1. f ( x ) = 1 x 2. F = { 0 } 1.f(x)=\frac 1 x \\2.F=\{0\} 1.f(x)=x12.F={0}
  • f : R n → R 为连续函数的充要条件是 : 对任意闭集 F ⊂ R , f − 1 ( F ) 必为闭集。 f:R^n\rightarrow R为连续函数的充要条件是:对任意闭集F \subset R,f^{-1}(F)必为闭集。 f:RnR为连续函数的充要条件是:对任意闭集FR,f1(F)必为闭集。
    1. 充分性: y 0 ∈ F , F 为闭集。 E = f − 1 ( y 0 ) , x 0 ∈ R n E 中 { x k } , lim ⁡ ∣ x k − x 0 ∣ = 0 f ∈ C ( R n ) , x 0 ∈ E ′ = > f ( x 0 ) ∈ F , x 0 ∈ f − 1 ( F ) 2. 必要性 : E = f − 1 ( F ) , E ⊃ E ′ x 0 ∈ E E 中 { x k } , lim ⁡ ∣ x k − x 0 ∣ = 0 x 0 ∈ E ′ ∀ ϵ > 0 , ∃ δ > 0 , x ∈ E ∩ B ( x 0 , δ ) ∣ f ( x ) − f ( x 0 ) ∣ < ϵ , f ( x ) 在 x = x 0 处连续, f ( x ) 在 E ⊂ R n 内处处连续。 1.充分性:y_0\in F,F为闭集。 \\E=f^{-1}(y_0),x_0 \in R^n \\E中\{x_k\},\lim|x_k-x_0|=0 \\f \in C(R^n),x_0 \in E' =>f(x_0)\in F,x_0 \in f^{-1}(F) \\2.必要性: \\E=f^{-1}(F),E \supset E' \\x_0 \in E \\E中\{x_k\},\lim|x_k-x_0|=0 \\x_0 \in E' \\\forall \epsilon \gt 0,\exist\delta \gt 0,x \in E\cap B(x_0,\delta) \\|f(x)-f(x_0) |\lt \epsilon,f(x)在x=x_0处连续, \\f(x)在E \subset R^n内处处连续。 1.充分性:y0F,F为闭集。E=f1(y0),x0RnE{xk},limxkx0=0fC(Rn),x0E=>f(x0)F,x0f1(F)2.必要性:E=f1(F),EEx0EE{xk},limxkx0=0x0Eϵ>0,δ>0xEB(x0,δ)f(x)f(x0)<ϵ,f(x)x=x0处连续,f(x)ERn内处处连续。

理论

逐点连续

定义

逐点连续是数学中函数连续性概念的一种表述方式,它侧重于函数在定义域内每一个点的连续性。以下是对逐点连续的详细解释:

逐点连续是指对于给定的函数 y = f ( x ) y = f(x) y=f(x),在其定义域内的每一个点 x 0 x_0 x0,如果对于任意的正数 ϵ \epsilon ϵ(无论多么小),都存在一个正数 δ \delta δ(依赖于 ϵ \epsilon ϵ x 0 x_0 x0),使得当 x x x满足 ∣ x − x 0 ∣ < δ |x - x_0| < \delta xx0<δ时,都有 ∣ f ( x ) − f ( x 0 ) ∣ < ϵ |f(x) - f(x_0)| < \epsilon f(x)f(x0)<ϵ,则称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续。如果函数在其定义域内的每一个点都连续,则称该函数在其定义域上逐点连续。

历史背景

大约在十八世纪60年代,德国数学家魏尔斯特拉斯(K. Weierstrass, 1815-1897)给出了函数连续性的逐点定义,即上述的数学表述。这一定义成为了现代数学中函数连续性的基础。

性质
  1. 局部性:逐点连续的定义关注的是函数在单个点的行为,即函数在该点附近的变化是否足够“平滑”或“连续”。
  2. 普适性:由于函数在其定义域内的每一个点都可能需要满足连续性的条件,因此逐点连续是对函数在整个定义域上连续性的一种全面要求。
  3. 与一致连续的区别:逐点连续和一致连续是函数连续性的两种不同表述方式。逐点连续关注的是函数在单个点的连续性,而一致连续则关注函数在某个区间上的整体连续性。具体来说,一致连续要求对于区间内的任意两点 x 1 x_1 x1 x 2 x_2 x2,只要它们足够接近(即 ∣ x 1 − x 2 ∣ |x_1 - x_2| x1x2小于某个正数 δ \delta δ),那么函数值 f ( x 1 ) f(x_1) f(x1) f ( x 2 ) f(x_2) f(x2)也必须足够接近(即 ∣ f ( x 1 ) − f ( x 2 ) ∣ |f(x_1) - f(x_2)| f(x1)f(x2)小于某个正数 ϵ \epsilon ϵ),且这个 δ \delta δ的选取不依赖于区间内的具体点。
应用

逐点连续在数学分析、微积分、实变函数等多个数学分支中都有广泛的应用。它是研究函数性质、求解极限、证明定理等问题的基本工具之一。

综上所述,逐点连续是数学中函数连续性概念的一种重要表述方式,它要求函数在其定义域内的每一个点都满足连续性的条件。

充分条件和必要条件

在数学和逻辑学中,充分条件和必要条件是两个重要的概念,它们用于描述命题之间的逻辑关系。

充分条件

定义:如果条件A是结果B的充分条件,那么当A成立时,B也必然成立。这可以表示为:如果A,则B(A→B)。但B的发生不一定要求A必须发生,也就是说,A不是B发生的唯一原因。

例子:如果下雨(A),那么地面会湿(B)。这里,“下雨”是“地面湿”的充分条件,因为下雨确实会导致地面湿。但地面湿可能有其他原因,如水管破裂等。

必要条件

定义:如果条件A是结果B的必要条件,那么B要想发生,A必须发生。但A的发生并不保证B一定发生,因为可能还需要其他条件。这可以表示为:只有A,才可能B(A←B,但更常见的表示是强调“必要”而非“只有”,即没有A就没有B)。

例子:为了煮开水(B),必须有热源(A)。这里,“有热源”是“煮开水”的必要条件,因为没有热源水就无法被加热至沸腾。但仅有热源也不足以保证水一定会被煮开,因为还需要水本身、容器等其他条件。

充要条件

有时,一个条件既是结果的充分条件也是必要条件,这种情况下称为充要条件。充要条件可以表示为:A当且仅当B(A↔B)。

例子:在三角形中,等边三角形(A)当且仅当三边等长(B)。这里,“等边三角形”与“三边等长”互为充要条件。

总结
  • 充分条件:如果A,则B(A→B),A是B的充分条件。
  • 必要条件:只有A,才可能B(或说,没有A就没有B),A是B的必要条件。
  • 充要条件:A当且仅当B(A↔B),A既是B的充分条件也是必要条件。

不连续点集

在数学中,不连续点集通常指的是函数在其定义域内不连续的那些点的集合。不连续点可以是由于函数在该点未定义、极限不存在、或者左右极限不相等(即跳跃间断点)等原因造成的。

常见的不连续点类型
  1. 可去间断点:函数在该点有定义,但左右极限存在且相等但不等于该点的函数值。
  2. 跳跃间断点:函数在该点两侧有定义,但左右极限存在但不相等。
  3. 无穷间断点:函数在该点至少一侧的极限是无穷大。
  4. 振荡间断点:函数在该点附近的极限不存在,且在该点附近函数值振荡。
示例

考虑函数

f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1

这个函数在 x = 0 x = 0 x=0 处是不连续的,因为当 x x x 趋近于 0 时,函数值趋近于无穷大(即极限不存在)。因此,不连续点集为 { 0 } \{0\} {0}

再考虑函数

g ( x ) = { x 2 if  x ≠ 1 2 if  x = 1 g(x) = \begin{cases} x^2 & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases} g(x)={x22if x=1if x=1

这个函数在 x = 1 x = 1 x=1 处有一个可去间断点,因为 g ( 1 ) = 2 g(1) = 2 g(1)=2,但 lim ⁡ x → 1 g ( x ) = 1 2 = 1 \lim_{{x \to 1}} g(x) = 1^2 = 1 limx1g(x)=12=1。所以,不连续点集为 { 1 } \{1\} {1}

如何找到不连续点集
  1. 检查定义域:首先确定函数的定义域。
  2. 寻找可能的间断点:这些点可能是使分母为零的点、分段函数的分段点、或者函数表达式中其他可能导致不连续的点。
  3. 计算极限:对于每个可能的间断点,计算其左右极限(如果存在)。
  4. 判断不连续类型:根据极限的结果和函数在该点的值(如果存在),判断不连续的类型。
结论

不连续点集是函数在其定义域内不连续的那些点的集合。通过检查定义域、寻找可能的间断点、计算极限和判断不连续类型,我们可以找到这个集合。

孤立点集

在拓扑学和数学分析中,一个集合的“闭集”性质是相对于其所在的拓扑空间而言的。一个集合是闭集,如果它的所有极限点(或称为聚点)都属于该集合本身。换句话说,如果集合的所有边界点都包含在该集合中,则这个集合是闭集。

对于“孤立点集”这个概念,它指的是一个集合中的元素都是孤立的,即每个元素都有一个不包含集合中其他任何点的邻域。在欧几里得空间中,这通常意味着每个点周围都存在一个足够小的开球,这个开球只包含该点本身而不包含集合中的其他点。

现在,我们考虑孤立点集是否为闭集:

  1. 在有限集合的情况下:如果孤立点集是有限的,并且每个点都是孤立的,那么这些点本身就不会是任何序列的极限点(因为周围没有其他点可以形成序列来逼近它们)。因此,这样的集合自动地包含了它所有的极限点(实际上是没有极限点),所以它是闭集。

  2. 在无限集合的情况下:如果孤立点集是无限的,并且每个点仍然是孤立的,那么情况与有限集合类似。每个孤立的点都不会是其他任何序列的极限点,因此集合包含了它所有的极限点(或说没有极限点),所以它也是闭集。

  3. 注意:这里的关键是理解“孤立点”的定义。如果一个点被定义为孤立的,那么它就不能是任何包含集合中其他点的序列的极限。因此,这样的点集自动地是闭的。

综上所述,无论是有限的还是无限的孤立点集,在通常的拓扑空间中(如欧几里得空间),它们都是闭集。

参考文献

1、《实变函数论》
2、文心一言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值