数模原理精解【1】

随机事件与概率

基础

  • 随机事件在相同情况下可重复进行。
  • 每一个可能的结果叫随机事件的样本点或基本事件
  • 全体样本点组成的集合叫做样本空间。样本空间可以是有限集,也可以是无限集。
  • 样本空间包含所有样本点,可称样本空间为必然事件
  • 事件不相容,即互斥,两事件没有共同点
  • 随机事件 X 1 在 m 次事件中出现了 n 次,则概率 P ( X 1 ) = n m 随机事件X_1在m次事件中出现了n次,则概率P(X_1)=\frac n m 随机事件X1m次事件中出现了n次,则概率P(X1)=mn
  • 不可能事件为 ∅ , P ( ∅ ) = 0 不可能事件为\empty,P(\empty)=0 不可能事件为P()=0
  • 设 A , B 是两个事件,若 A ⊂ B , P ( B − A ) = P ( B ) − P ( A ) , P ( B ) > P ( A ) 设A,B是两个事件,若A \subset B,P(B-A)=P(B)-P(A),P(B) \gt P(A) AB是两个事件,若ABP(BA)=P(B)P(A),P(B)>P(A)
  • P ( A C ) = 1 − P ( A ) P(A^C)=1-P(A) P(AC)=1P(A)
  • P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
  • $$

样本空间与事件

简单事件

1、试验是获得一个观测或进行一次测量的过程
2、简单事件是一个试验的基本结果,注意,此结果不能再分解为更简单结果
3、样本空间为所有简单事件的集合。
4、某简单事件的概率是进行试验时,该事件发生的可能性。
(1)某事件 E E E的概率记为 p ( E ) p(E) p(E)
(2)试验次数很多时,概率可用比例计算:
P ( E ) = 试验次数 E 发生次数 P(E)= {试验次数 \above{1pt} E发生次数} P(E)=E发生次数试验次数
5、概率两条法则
( 1 ) E 1 , E 2 , . . . , E k 表示样本空间中的简单事件 ( 2 ) 0 ≤ P ( E i ) ≤ 1 , i = 1 , 2 , . . . , k ( 3 ) 样本空间所有简单事件的概率和为 1 ∑ i = 1 k P ( E i ) = 1 (1)E_1,E_2,...,E_k表示样本空间中的简单事件 \\(2)0 \le P(E_i) \le 1,i=1,2,...,k \\(3)样本空间所有简单事件的概率和为1 \\\sum_{i=1}^k P(E_i)=1 (1)E1,E2,...,Ek表示样本空间中的简单事件(2)0P(Ei)1,i=1,2,...,k(3)样本空间所有简单事件的概率和为1i=1kP(Ei)=1
6、简单事件组成的集合(可以只有一个元素,即一个简单事件)为事件,概率如下:
P ( E ) = 所有简单事件的概率之和 P(E)=所有简单事件的概率之和 P(E)=所有简单事件的概率之和

复合事件

1、两个或更多事件的组合为复合事件,并和交是复合事件形成的方式
(1)事件A和B的并是在一次单独试验中,事件A或事件B发生,或者它们同时发生,这三种情况下的复合事件记为
A ⋃ B = A 或 B A \bigcup B=A或B AB=AB
(2)事件A和B的交是一次单独试验中,事件A和事件B同时发生,这样的复合事件记为
A ⋂ B = A 和 B A \bigcap B=A和B AB=AB
2、补事件
(1)事件A的补 A c A^c Ac不在事件A中发生的简单事件组成的集合。
(2) A ⋃ A c = A A \bigcup A^c =A AAc=A , P ( A ) + P ( A c ) = 1 P(A)+P(A^c)=1 P(A)+P(Ac)=1

条件概率

1、事件A发生没有特定前提,即:A为无条件概率。
2、事件A发生的前提是事件B发生,即:A为条件概率 P ( A ∣ B ) P(A|B) P(AB)
P ( A ∣ B ) = P ( A ⋂ B ) P ( B ) P ( B ) ≠ 0 P(A|B)=\frac {P(A \bigcap B)} {P(B)} \\P(B) \not = 0 P(AB)=P(B)P(AB)P(B)=0

概率法则

1、并的加法

P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A ⋂ B ) P(A \bigcup B)=P(A)+P(B)-P(A \bigcap B) P(AB)=P(A)+P(B)P(AB)
下面引入互斥的概念
事件A、B互斥,即: P ( A ⋂ B ) = 0 P(A \bigcap B)=0 P(AB)=0,A和B同时发生的概率为0。
互斥情况概率如下:
P ( A ⋃ B ) = P ( A ) + P ( B ) P(A \bigcup B)=P(A)+P(B) P(AB)=P(A)+P(B)

2、交的乘法

A ⋂ B = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) A \bigcap B=P(A|B)P(B)=P(B|A)P(A) AB=P(AB)P(B)=P(BA)P(A)
下面引入独立的概念
事件A和B独立,A的发生不影响B,B的发生不影响A,即: P ( A ∣ B ) = P ( A ) , P ( A ∣ B ) = P ( B ) P(A|B)=P(A),P(A|B)=P(B) P(AB)=P(A),P(AB)=P(B)
如果不独立,A和B就是相关的了。
独立情况概率如下:
A ⋂ B = P ( A ) P ( B ) A \bigcap B=P(A)P(B) AB=P(A)P(B)

贝叶斯

概念

当事件E发生时,伴随了事件 A 1 , A 2 , . . . , A k A_1,A_2,...,A_k A1,A2,...,Ak中的任何一个发生。
事件 A 1 . . . A k A_1...A_k A1...Ak互斥且完备,此时应用贝叶斯法则求条件概率 P ( A i ∣ E ) P(A_i|E) P(AiE)

完备的含义: 设 S 为试验 E 的样本空间, B 1 , B 2 , … , B n 为 E 的一组事件。若 ( i ) B i ∩ B j = ∅( i ≠ j 且 i 、 j = 1 , 2 , … , n ); ( i i ) B 1 ∪ B 2 ∪ … ∪ B n = S , 则称 B 1 , B 2 , … , B n 为样本空间 S 的一个完备事件组 设S为试验E的样本空间,B_1,B_2,…,B_n为E的一组事件。若 \\(i)B_i ∩ B_j=∅ (i≠j且i、j=1,2,…,n); \\(ii)B_1 ∪ B_2 ∪…∪B_n=S, \\则称B1,B2,…,Bn为样本空间S的一个完备事件组 S为试验E的样本空间,B1B2BnE的一组事件。若(i)BiBj=i=jij=12n);(ii)B1B2Bn=S则称B1B2Bn为样本空间S的一个完备事件组

公式

P ( A i ∣ E ) = P ( A i ⋂ E ) P ( E ) = P ( E ∣ A i ) P ( A i ) P ( E ∣ A i ) P ( A 1 ) + P ( E ∣ A 2 ) P ( A 2 ) + . . . + P ( E ∣ A k ) P ( A k ) P(A_i|E)=\frac {P(A_i\bigcap E)} {P(E)}=\frac {P(E|A_i)P(A_i)} {P(E|A_i)P(A_1)+P(E|A_2)P(A_2)+...+P(E|A_k)P(A_k)} P(AiE)=P(E)P(AiE)=P(EAi)P(A1)+P(EA2)P(A2)+...+P(EAk)P(Ak)P(EAi)P(Ai)
观察上述公式,可知
1 、 P ( A i ) P ( E ∣ A i ) 为已知可计算 A 1 , A 2 , … , A k 为样本空间 A 的一个完备事件组 A 1 , A 2 , … , A k 是集合 A 的划分(分类),确定了一个等价关系。 2 、 P ( E ) = P ( E ∣ A 1 ) P ( A 1 ) + P ( E ∣ A 2 ) P ( A 2 ) + . . . + P ( E ∣ A k ) P ( A k ) 3 、 P ( E ) = ∑ i = 1 k P ( E ∣ A i ) P ( A i ) 4 、 P ( E ) = P ( E ∣ A i ) P ( A i ) + P ( E ∣ A i c ) P ( A i c ) A i c 为 A i 的补集 1、P(A_i)P(E|A_i)为已知可计算 \\A_1,A_2,…,A_k为样本空间A的一个完备事件组 \\A_1,A_2,…,A_k是集合A的划分(分类),确定了一个等价关系。 \\2、 P(E)=P(E|A_1) P(A_1)+P(E|A_2)P(A_2)+...+P(E|A_k)P(A_k) \\3、 P(E)=\sum_ {i=1}^k P(E|A_i)P(A_i) \\4、P(E)=P(E|A_i) P(A_i)+P(E|A_i^c) P(A_i^c) \\A_i^c为A_i的补集 1P(Ai)P(EAi)为已知可计算A1A2Ak为样本空间A的一个完备事件组A1A2Ak是集合A的划分(分类),确定了一个等价关系。2P(E)=P(EA1)P(A1)+P(EA2)P(A2)+...+P(EAk)P(Ak)3P(E)=i=1kP(EAi)P(Ai)4P(E)=P(EAi)P(Ai)+P(EAic)P(Aic)AicAi的补集

理论

以下内容来自文心一言的自动生成

事件概率

事件概率是描述某一事件在随机试验中发生的可能性大小的数值度量。它具有以下几个主要特点:

  1. 非负性:任何事件的概率都是非负的,即概率值大于等于0。这反映了事件发生的可能性总是存在的,即使这种可能性非常小。

  2. 规范性(或称为归一性):对于必然事件(即一定会发生的事件),其概率为1;对于不可能事件(即一定不会发生的事件),其概率为0。这保证了所有可能事件的概率之和为1,从而维持了概率空间的一致性和完整性。

  3. 可加性(对于互斥事件):如果两个事件A和B是互斥的(即它们不能同时发生),那么这两个事件并集(即A或B发生)的概率等于它们各自概率的和。即, P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B)(当A和B互斥时)。这一性质允许我们将复杂事件的概率分解为更简单事件的概率之和。

  4. 连续性(在某些连续概率分布中):对于连续型随机变量,其取某一特定值的概率实际上是0(因为存在无限多个可能的取值)。然而,我们可以通过定义在某个区间内取值的概率来讨论其分布特性,这体现了概率的连续性。

  5. 相对性:概率是相对于特定随机试验和样本空间而言的。同样的事件在不同的随机试验中可能有不同的概率。

  6. 条件性:在给定某个事件已经发生的条件下,其他事件发生的概率会发生变化,这称为条件概率。条件概率反映了事件之间的依赖关系。

  7. 独立性:如果两个事件A和B的发生互不影响,即一个事件的发生不改变另一个事件发生的概率,则称这两个事件是独立的。独立性是概率论中一个非常重要的概念,它简化了复杂事件的概率计算。

  8. 可测性:在概率论中,我们要求所有可能的事件(即样本空间中的元素)都应该是可测量的,这意味着我们可以为它们分配一个明确的概率值。

这些特点共同构成了概率论的基础,使得我们能够用数学的方法来描述和分析随机现象。

参考文献

1.文心一言
2.《数学》中国财政经济出版社 2010版
3.《统计学(原书第五版)》

  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值