人工智能与机器学习原理精解【12】

概率分布函数和概率密度函数

概述

概率分布函数和概率密度函数是概率论中两个密切相关的概念,‌它们之间的关系可以通过积分来体现。‌

  • 概率分布函数,‌也称为累积分布函数(‌CDF)‌,‌是一个描述随机变量取值小于或等于某个特定值的概率的函数。‌对于离散型随机变量,‌概率分布函数给出的是每个可能取值的概率;‌对于连续型随机变量,‌概率分布函数给出的是随机变量取值小于或等于某个值的概率。‌

  • 概率密度函数(‌PDF)‌,‌则是描述连续型随机变量在某一特定值附近取值的概率的函数。‌概率密度函数在某一特定值的取值并不表示该值被取到的概率,‌而是表示在该值附近取值的概率的密度。‌概率密度函数在某一区间的积分值等于该随机变量在该区间取值的概率。‌

  • 对于连续型随机变量,‌概率分布函数和概率密度函数之间的关系可以通过积分来体现。‌具体来说,‌概率分布函数是概率密度函数的积分。‌也就是说,‌对于任意一个实数x,‌随机变量取值小于或等于x的概率等于概率密度函数在负无穷到x之间的积分。‌

  • 概率分布函数和概率密度函数都是用来描述随机变量取值概率的函数,‌它们都是概率论中非常重要的工具。‌在实际应用中,‌我们可以根据具体的问题选择合适的函数来描述随机变量的概率分布。‌

分布函数与密度函数

1. 设 X = ( X 1 , X 2 , . . . , X n ) T 为随机矢量 x = ( x 1 , x 2 , . . . x n ) T 为确定性矢量。 2. 随机矢量 X 的联合概率分布函数定义为: F ( x 1 , x 2 , . . . x n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , X 3 ≤ x 3 ) P 表示括号中事件同时发生的概率。 写成矢量形式为: F ( x ) = P ( X ≤ x ) 3. 随机矢量 X 的联合概率密度函数定义为: p ( x 1 , x 2 , . . . , x n ) = ∧ p ( x ) = ∂ n F ( x 1 , x 2 , . . . , x n ) / ( ∂ x 1 ∂ x 2 . . . ∂ x n ) 4. 集合由 c 类模式组成,第 i 类记为 w i w i 类模式特征矢量有其自己的分布函数和密度函数。 F ( x ∣ w i ) = P ( X ≤ x ∣ w i ) p ( x ∣ w i ) = ∂ n F ( x 1 , x 2 , . . . , x n ∣ w i ) / ( ∂ x 1 ∂ x 2 . . . ∂ x n ) 1.设X=(X_1,X_2,...,X_n)^T为随机矢量 \\x=(x_1,x_2,...x_n)^T为确定性矢量。 \\2.随机矢量X的联合概率分布函数定义为: \\F(x_1,x_2,...x_n)=P(X_1 \le x_1,X_2 \le x_2,X_3 \le x_3) \\P表示括号中事件同时发生的概率。 \\写成矢量形式为:F(x)=P(X\le x) \\3.随机矢量X的联合概率密度函数定义为: \\p(x_1,x_2,...,x_n)^{\wedge}_{=}p(x)=∂^nF(x_1,x_2,...,x_n)/(∂_{x_1}∂_{x_2}...∂_{x_n}) \\4.集合由c类模式组成,第i类记为w_i \\w_i类模式特征矢量有其自己的分布函数 和密度函数。 \\F(x|w_i)=P(X\le x|w_i) \\p(x|w_i)=∂^nF(x_1,x_2,...,x_n|w_i)/(∂_{x_1}∂_{x_2}...∂_{x_n}) 1.X=(X1,X2,...,Xn)T为随机矢量x=(x1,x2,...xn)T为确定性矢量。2.随机矢量X的联合概率分布函数定义为:F(x1,x2,...xn)=P(X1x1,X2x2,X3x3)P表示括号中事件同时发生的概率。写成矢量形式为:F(x)=P(Xx)3.随机矢量X的联合概率密度函数定义为:p(x1,x2,...,xn)=p(x)=nF(x1,x2,...,xn)/(x1x2...xn)4.集合由c类模式组成,第i类记为wiwi类模式特征矢量有其自己的分布函数和密度函数。F(xwi)=P(Xxwi)p(xwi)=nF(x1,x2,...,xnwi)/(x1x2...xn)

边缘密度

下面内容由文心一言生成
边缘密度(Marginal Density)是概率论中的一个重要概念,特别是在处理多维随机变量的联合分布时。当我们对多维随机变量的联合分布进行部分积分或求和(对于离散情况),以消除某些变量时,所得到的关于剩余变量的分布就是边缘分布,而对应的密度函数就是边缘密度。

定义

假设有两个随机变量 X X X Y Y Y,它们的联合密度函数为 f X , Y ( x , y ) f_{X,Y}(x,y) fX,Y(x,y)。那么,关于 X X X的边缘密度函数 f X ( x ) f_X(x) fX(x)可以通过对 Y Y Y的联合密度函数进行积分得到,即:

f X ( x ) = ∫ − ∞ ∞ f X , Y ( x , y )   d y f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy fX(x)=fX,Y(x,y)dy

类似地,关于 Y Y Y的边缘密度函数 f Y ( y ) f_Y(y) fY(y)可以通过对 X X X的联合密度函数进行积分得到,即:

f Y ( y ) = ∫ − ∞ ∞ f X , Y ( x , y )   d x f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx fY(y)=fX,Y(x,y)dx

性质

  1. 非负性:边缘密度函数 f X ( x ) f_X(x) fX(x) f Y ( y ) f_Y(y) fY(y)都是非负的。
  2. 归一性:边缘密度函数的积分等于1,即
    ∫ − ∞ ∞ f X ( x )   d x = 1 \int_{-\infty}^{\infty} f_X(x) \, dx = 1 fX(x)dx=1
    ∫ − ∞ ∞ f Y ( y )   d y = 1 \int_{-\infty}^{\infty} f_Y(y) \, dy = 1 fY(y)dy=1
  3. 概率计算:边缘密度函数可以用来计算单个随机变量落在某个区间内的概率,例如, P ( a ≤ X ≤ b ) = ∫ a b f X ( x )   d x P(a \leq X \leq b) = \int_a^b f_X(x) \, dx P(aXb)=abfX(x)dx

示例

假设随机变量 X X X Y Y Y的联合密度函数为

f X , Y ( x , y ) = { 1 3 ( x 2 + y ) if  0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0 otherwise f_{X,Y}(x,y) = \begin{cases} \frac{1}{3}(x^2 + y) & \text{if } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} fX,Y(x,y)={31(x2+y)0if 0x1,0y1otherwise

X X X的边缘密度函数 f X ( x ) f_X(x) fX(x)

解:

f X ( x ) = ∫ 0 1 1 3 ( x 2 + y )   d y = 1 3 ( x 2 y + y 2 2 ) ∣ y = 0 y = 1 = 1 3 ( x 2 + 1 2 ) f_X(x) = \int_0^1 \frac{1}{3}(x^2 + y) \, dy = \frac{1}{3} \left( x^2y + \frac{y^2}{2} \right) \Bigg|_{y=0}^{y=1} = \frac{1}{3} \left( x^2 + \frac{1}{2} \right) fX(x)=0131(x2+y)dy=31(x2y+2y2) y=0y=1=31(x2+21)

注意,这里我们只考虑了 0 ≤ x ≤ 1 0 \leq x \leq 1 0x1的情况,因为当 x x x不在这个区间内时,联合密度函数为0,所以边缘密度函数也为0。因此,完整的 f X ( x ) f_X(x) fX(x)为:

f X ( x ) = { 1 3 ( x 2 + 1 2 ) if  0 ≤ x ≤ 1 0 otherwise f_X(x) = \begin{cases} \frac{1}{3} \left( x^2 + \frac{1}{2} \right) & \text{if } 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} fX(x)={31(x2+21)0if 0x1otherwise

定义

对于二维连续型随机变量 ( X , Y ) (X, Y) (X,Y),其联合密度函数为 f ( x , y ) f(x, y) f(x,y)。此时,随机变量 X X X的边缘密度函数 f X ( x ) f_X(x) fX(x)定义为对 y y y进行全空间积分的结果,即

f X ( x ) = ∫ − ∞ + ∞ f ( x , y )   d y f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy fX(x)=+f(x,y)dy

同理,随机变量 Y Y Y的边缘密度函数 f Y ( y ) f_Y(y) fY(y)定义为对 x x x进行全空间积分的结果,即
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y )   d x f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx fY(y)=+f(x,y)dx

作用

边缘密度函数在统计学中具有广泛的应用价值,主要体现在以下几个方面:

  1. 描述特定随机变量的概率分布:边缘密度函数能够描述多维随机变量中某个特定随机变量的概率分布,从而帮助我们理解和分析该随机变量的行为特性。
  2. 计算期望和方差:在已知边缘密度函数的情况下,我们可以进一步计算该随机变量的期望和方差等统计量,从而更全面地了解该随机变量的统计特性。
  3. 分析随机变量之间的相关性:通过比较两个随机变量的边缘密度函数,我们可以初步判断它们之间是否存在相互依赖的关系。如果两个随机变量的边缘密度函数相似,那么它们很可能存在一定的相关性。
  4. 实际应用:在金融、生物统计学等领域,边缘密度函数具有广泛的应用。例如,在金融领域,我们常常关注某个特定事件的概率分布,通过计算边缘密度函数可以得到我们感兴趣的变量的概率分布;在生物统计学中,边缘密度函数可以用来描述某种疾病的患病率,从而帮助医生进行诊断和治疗。
    在概率论和统计学中,边缘密度(Marginal Density)和导数(Derivative)是两个相对独立的概念,它们之间没有直接的数学关系。然而,在某些情况下,边缘密度的计算可能涉及到对联合密度函数(Joint Density Function)进行积分,而这个积分过程在某些特定形式下可能与导数有关,但这种联系并不是普遍的。

边缘密度与导数有关系吗?

边缘密度是多维随机变量联合分布的一个组成部分,它描述了在忽略其他变量的情况下,某一变量的概率分布。具体来说,如果有两个随机变量 X X X Y Y Y,它们的联合密度函数为 f X , Y ( x , y ) f_{X,Y}(x,y) fX,Y(x,y),那么 X X X的边缘密度函数 f X ( x ) f_X(x) fX(x)可以通过对 Y Y Y的联合密度函数进行积分得到:

f X ( x ) = ∫ − ∞ ∞ f X , Y ( x , y )   d y f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy fX(x)=fX,Y(x,y)dy

这个过程是一个积分过程,与导数无关。

导数

导数是微积分中的一个基本概念,它描述了函数在某一点处的切线斜率,即函数值随自变量变化的瞬时变化率。在数学、物理、工程等领域中,导数有着广泛的应用。

可能的联系

尽管边缘密度和导数在定义上是独立的,但在某些特定情况下,它们之间可能存在间接的联系。例如,在某些复杂的概率模型中,联合密度函数可能具有某种特定的形式,这种形式可能使得对联合密度函数进行积分以得到边缘密度函数的过程变得类似于求解某个函数的导数。然而,这种联系是特定的,并且不是普遍存在的。

此外,在某些概率分布的参数估计问题中,可能会使用到最大似然估计(Maximum Likelihood Estimation, MLE)方法,这种方法涉及到对似然函数求导以找到使似然函数最大的参数值。虽然这涉及到导数,但它与边缘密度的计算没有直接关系。

综上所述,边缘密度和导数在概率论和统计学中是两个相对独立的概念,它们之间没有直接的数学关系。然而,在某些特定情况下,它们之间可能存在间接的联系或相似性。

随机矢量

随机矢量的特征

  • 相关公式
    1.均值矢量(期望矢量)
    n 维随机矢量 X 的数学期望 μ 定义为: μ = E [ X ] = ∧ X ˉ = [ E [ X 1 ] E [ X 2 ] . . E [ X n ] ] = ∧ ∫ x n x p ( x ) d x n维随机矢量X的数学期望\mu定义为: \\\mu=E[X]^{\wedge}_{=}\bar X=\begin{bmatrix*}[r] E[X_1] \\ E[X_2] \\ .\\ .\\ E[X_n] \end{bmatrix*} \\^{\wedge}_{=} \int_{x^n}xp(x)dx n维随机矢量X的数学期望μ定义为:μ=E[X]=Xˉ= E[X1]E[X2]..E[Xn] =xnxp(x)dx

其中, μ 的第 i 个分量 μ i = E [ x i ] = ∫ − ∞ ∞ x i p ( x i ) d x i = ∫ − ∞ ∞ . . . ∫ − ∞ ∞ x i p ( x 1 , x 2 , . . . , x n ) d x 1 d x 2 . . . d x n = ∧ X ˉ i p ( x i ) 是第 i 个分量 X i 边缘密度 随机矢量 X 的均值矢量 μ 的各分量是相应的各随机分量的均值。 其中,\mu的第i个分量 \\\mu_i=E[x_i]=\int_{-\infty}^{\infty}x_ip(x_i)dx_i=\int_{-\infty}^{\infty}...\int_{-\infty}^{\infty}x_ip(x_1,x_2,...,x_n)dx_1dx_2...dx_n \\^{\wedge}_{=}\bar X_i \\p(x_i)是第i个分量X_i边缘密度 \\随机矢量X的均值矢量\mu的各分量是相应的各随机分量的均值。 其中,μ的第i个分量μi=E[xi]=xip(xi)dxi=...xip(x1,x2,...,xn)dx1dx2...dxn=Xˉip(xi)是第i个分量Xi边缘密度随机矢量X的均值矢量μ的各分量是相应的各随机分量的均值。

参考文献

1、《现代模式识别》

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值