数模原理精解【5】

二元分布

满足要求

连续情况下, φ ( x , y ) \varphi (x,y) φ(x,y)为随机变量 X 、 Y X、Y XY的联合概率分布(二元分布),如果以下条件满足:
1 、 ∀ X 和 Y 值有 0 ≤ φ ( x , y ) ≤ 1 2 、离散型: ∑ y ∑ x φ ( x , y ) = 1 连续型 : ∫ − ∞ + ∞ ∫ − ∞ + ∞ φ ( x , y ) d x d y = 1 1、\forall X和Y值有 0 \le \varphi(x,y) \le 1 \\2、离散型:\sum_y\sum_x \varphi(x,y)=1 \\ 连续型:\textstyle\intop_{-\infty}^{+\infty}\textstyle\intop_{-\infty}^{+\infty}\varphi(x,y)dxdy=1 1XY值有0φ(x,y)12、离散型:yxφ(x,y)=1连续型:++φ(x,y)dxdy=1

边际分布

  • φ ( x , y ) \varphi (x,y) φ(x,y)为随机变量 X 、 Y X、Y XY的联合概率分布

离散型: X 边际概率密度: φ X ( x ) = P ( X = x ) = ∑ y P ( X = x , Y = y ) = ∑ y φ ( x , y ) Y 边际概率密度: φ Y ( y ) = P ( Y = y ) = ∑ x P ( X = x , Y = y ) = ∑ x φ ( x , y ) 连续型: X 边际概率密度: φ X ( x ) = ∫ φ ( x , y ) d y Y 边际概率密度: φ Y ( y ) = ∫ φ ( x , y ) d x \begin{aligned} & 离散型:\\ & X边际概率密度:\varphi_X(x)=P(X=x)=\sum_yP(X=x,Y=y)=\sum_y\varphi (x,y)\\ & Y边际概率密度:\varphi_Y(y)=P(Y=y)=\sum_xP(X=x,Y=y)=\sum_x\varphi (x,y)\\ & 连续型:\\ & X边际概率密度:\varphi_X(x)=\intop\varphi(x,y)dy\\ & Y边际概率密度:\varphi_Y(y)=\intop\varphi(x,y)dx\\ \end{aligned} 离散型:X边际概率密度:φX(x)=P(X=x)=yP(X=x,Y=y)=yφ(x,y)Y边际概率密度:φY(y)=P(Y=y)=xP(X=x,Y=y)=xφ(x,y)连续型:X边际概率密度:φX(x)=φ(x,y)dyY边际概率密度:φY(y)=φ(x,y)dx

条件概率

P ( A ∣ B ) = P ( A ⋂ B ) P ( B ) P(A|B)=\frac {P(A\bigcap B)}{P(B)} P(AB)=P(B)P(AB)

例子1

设 : P ( 0 , 0 ) = 0.27 , P ( 0 , 1 ) = 0.19 , P ( 0 , 2 ) = 0.24 P ( 1 , 0 ) = 0.1 , P ( 1 , 1 ) = 0.03 , P ( 1 , 2 ) = 0.17 φ ( x , y ) = P ( X = x , Y = y ) 1 、 0 ≤ φ ( x , y ) ≤ 1 2 、 ∑ x ∑ y φ ( x , y ) = 0.27 + 0.19 + 024 + 0.1 + 0.03 + 0.17 = 1 符合离散型二元分布的要求。 一、求 φ X ( 1 ) = P ( X = 1 ) = ? ,此为条件概率分布 P ( X = 1 ) = P ( Y ∣ X = 1 ) = P ( Y ∣ 1 ) = P ( X ⋂ Y ) P ( X ) = P ( 1 , Y ) P ( 1 ) = P ( 1 , Y ) P ( 1 , 0 ) + P ( 1 , 1 ) + P ( 1 , 2 ) = P ( 1 , Y ) 0.1 + 0.03 + 0.17 = P ( 1 , Y ) 0.3 P ( Y = 2 , X = 1 ) = P ( Y = 2 ∣ 1 ) = P ( 2 ∣ 1 ) = P ( 1 , 2 ) 0.3 = 0.17 0.3 = 0.56 二、边际概率分布 Y 边际概率密度: φ Y ( 2 ) = P ( Y = y ) = P ( Y = 2 ) = ∑ x P ( X = x , Y = 2 ) = ∑ x P ( x , 2 ) = 0.24 + 0.17 = 0.41 设: \\P(0,0)=0.27,P(0,1)=0.19,P(0,2)=0.24 \\P(1,0)=0.1,P(1,1)=0.03,P(1,2)=0.17 \\\varphi (x,y)=P(X=x,Y=y) \\1、0\le \varphi (x,y) \le 1 \\2、\sum_x\sum_y\varphi (x,y)=0.27+0.19+024+0.1+0.03+0.17=1 \\符合离散型二元分布的要求。 \\一、求\varphi_X(1)=P(X=1)=? ,此为条件概率分布 \\P(X=1)=P(Y|X=1)=P(Y|1)=\frac {P(X\bigcap Y)} {P(X)}=\frac {P(1,Y)} {P(1)}=\frac {P(1,Y)} {P(1,0)+P(1,1)+P(1,2)} \\=\frac {P(1,Y)} {0.1+0.03+0.17}=\frac {P(1,Y)} {0.3} \\P(Y=2,X=1)=P(Y=2|1)=P(2|1)=\frac {P(1,2)} {0.3}=\frac {0.17} {0.3}=0.56 \\二、边际概率分布 \\Y边际概率密度:\varphi_Y(2)=P(Y=y)=P(Y=2) \\=\sum_xP(X=x,Y=2)=\sum_xP(x,2)\\=0.24+0.17=0.41 :P(0,0)=0.27,P(0,1)=0.19,P(0,2)=0.24P(1,0)=0.1,P(1,1)=0.03P(1,2)=0.17φ(x,y)=P(X=x,Y=y)10φ(x,y)12xyφ(x,y)=0.27+0.19+024+0.1+0.03+0.17=1符合离散型二元分布的要求。一、求φX(1)=P(X=1)=?,此为条件概率分布P(X=1)=P(YX=1)=P(Y∣1)=P(X)P(XY)=P(1)P(1,Y)=P(1,0)+P(1,1)+P(1,2)P(1,Y)=0.1+0.03+0.17P(1,Y)=0.3P(1,Y)P(Y=2,X=1)=P(Y=2∣1)=P(2∣1)=0.3P(1,2)=0.30.17=0.56二、边际概率分布Y边际概率密度:φY(2)=P(Y=y)=P(Y=2)=xP(X=x,Y=2)=xP(x,2)=0.24+0.17=0.41

例子2

对于 φ ( x , y ) = P ( a x ≤ X ≤ b x , a y ≤ Y ≤ b y ) = ∫ a x b x ∫ a y b y φ ( x , y ) d x d y 1 、 ∀ X 和 Y 值有 0 ≤ φ ( x , y ) ≤ 1 2 、连续型 : ∫ − ∞ + ∞ ∫ − ∞ + ∞ φ ( x , y ) d x d y = 1 符合连续型二元分布的要求。 设 : a x = 0 , b x = 1 , a y = 0 , b y = 1 φ ( x , y ) = { 3 x + 5 y 2 if  0 ≤ X ≤ 1 , 0 ≤ Y ≤ 1 0 if  e l s e 一、求边际概率分布 φ X ( x ) = ? φ X ( x ) = ∫ φ ( x , y ) d y = ∫ 0 1 φ ( x , y ) d y = ∫ 0 1 ( 3 x + 5 y 2 ) d y = 3 x + 5 ∫ 0 1 y 2 d y = 3 x + 5 3 y 3 ∣ 0 1 = 3 x + 5 3 φ Y ( y ) = ? φ Y ( y ) = ∫ φ ( x , y ) d x = ∫ 0 1 φ ( x , y ) d x = ∫ 0 1 ( 3 x + 5 y 2 ) d x = 3 2 x 2 ∣ 0 1 + 5 y 2 = 3 2 + 5 y 2 给定任意 y 值: φ Y ( 0.5 ) = 3 2 + 5 ∗ 0. 5 2 φ Y ( − 1 ) = 0 二、求条件概率分布 φ X ∣ Y ( x ∣ y ) = P ( X = x , Y = y ) P ( Y = y ) = φ X , Y ( x , y ) φ Y ( y ) φ Y ∣ X ( y ∣ x ) = P ( Y = y , X = x ) P ( X = x ) = φ X , Y ( x , y ) φ X ( x ) φ X ∣ Y ( x ∣ y ) = φ X , Y ( x , y ) φ Y ( y ) = 3 x + 5 y 2 3 2 + 5 y 2 φ Y ∣ X ( y ∣ x ) = φ X , Y ( x , y ) φ X ( x ) = 3 x + 5 y 2 3 x + 5 3 设 y = 0.7 , x ≤ 1 3 φ X ∣ Y ( X ≤ 1 3 , Y = 0.7 ) = P ( X ≤ 1 3 , X = 0.7 ) = ∫ 0 1 3 φ X ∣ Y ( x ∣ 0.7 ) d x = ∫ 0 1 3 3 x + 5 ∗ ( 0.7 ) 2 3 2 + 5 ∗ ( 0.7 ) 2 d x = . . . . . 设 x = 0.7 , y ≤ 1 3 φ Y ∣ X ( Y ≤ 1 3 , X = 0.7 ) = P ( X ≤ 1 3 , X = 0.7 ) = ∫ 0 1 3 φ Y ∣ X ( y ∣ 0.7 ) d x = ∫ 0 1 3 3 ∗ 0.7 + 5 y 2 3 ∗ 0.7 + 5 3 d y = . . . 对于\\\varphi (x,y)=P(a_x\le X\le b_x,a_y \le Y \le b_y)=\textstyle\intop_{a_x}^{b_x}\intop_{a_y}^{b_y}\varphi(x,y)dxdy \\1、\forall X和Y值有 0 \le \varphi(x,y) \le 1 \\2、连续型:\textstyle\intop_{-\infty}^{+\infty}\textstyle\intop_{-\infty}^{+\infty}\varphi(x,y)dxdy=1 \\符合连续型二元分布的要求。 \\设:a_x=0,b_x=1,a_y=0,b_y=1 \\\varphi(x,y)=\begin{cases} 3x+5y^2 &\text{if } 0 \le X \le 1,0 \le Y\le 1 \\ 0 &\text{if } else \end{cases} \\一、求边际概率分布 \\\varphi_X(x)=? \\\varphi_X(x)=\intop\varphi(x,y)dy\\ \\=\intop_{0}^{1}\varphi(x,y)dy=\intop_{0}^{1}(3x+5y^2)dy=3x+5\intop_{0}^{1}y^2dy=3x+\frac 5 3 {y^3}|_{0}^{1}=3x+\frac 5 3 \\\varphi_Y(y)=? \\\varphi_Y(y)=\intop\varphi(x,y)dx\\ \\=\intop_{0}^{1}\varphi(x,y)dx=\intop_{0}^{1}(3x+5y^2)dx=\frac 3 2 x^2|_0^1+5y^2=\frac 3 2+5y^2 \\给定任意y值: \\\varphi_Y(0.5)=\frac 3 2+5*0.5^2 \\\varphi_Y(-1)=0 \\二、求条件概率分布\\ \begin{aligned} & \varphi_{X|Y}(x|y)=\frac {P(X=x,Y=y)} {P(Y=y)}=\frac {\varphi_{X,Y}(x,y)}{\varphi_Y(y)} \\ &\varphi_{Y|X}(y|x)=\frac {P(Y=y,X=x)} {P(X=x)}=\frac {\varphi_{X,Y}(x,y)}{\varphi_X(x)}\\ \end{aligned} \\ \varphi_{X|Y}(x|y)=\frac {\varphi_{X,Y}(x,y)}{\varphi_Y(y)} =\frac {3x+5y^2} {\frac 3 2+5y^2} \\ \varphi_{Y|X}(y|x)=\frac {\varphi_{X,Y}(x,y)}{\varphi_X(x)} =\frac {3x+5y^2} {3x+\frac 5 3} \\设y=0.7,x \le \frac 1 3 \\\varphi_{X|Y}(X \le \frac 1 3,Y=0.7)=P(X \le \frac 1 3,X=0.7)=\intop_0^{\frac 1 3}\varphi_{X|Y}(x|0.7)dx=\intop_0^{\frac 1 3}\frac {3x+5*(0.7)^2} {\frac 3 2+5*(0.7)^2}dx=..... \\设x=0.7,y \le \frac 1 3 \\\varphi_{Y|X}(Y \le \frac 1 3,X=0.7)=P(X \le \frac 1 3,X=0.7)=\intop_0^{\frac 1 3}\varphi_{Y|X}(y|0.7)dx=\intop_0^{\frac 1 3}\frac {3*0.7+5y^2} {3*0.7+\frac 5 3}dy=... 对于φ(x,y)=P(axXbx,ayYby)=axbxaybyφ(x,y)dxdy1XY值有0φ(x,y)12、连续型:++φ(x,y)dxdy=1符合连续型二元分布的要求。:ax=0,bx=1,ay=0,by=1φ(x,y)={3x+5y20if 0X1,0Y1if else一、求边际概率分布φX(x)=?φX(x)=φ(x,y)dy=01φ(x,y)dy=01(3x+5y2)dy=3x+501y2dy=3x+35y301=3x+35φY(y)=?φY(y)=φ(x,y)dx=01φ(x,y)dx=01(3x+5y2)dx=23x201+5y2=23+5y2给定任意y值:φY(0.5)=23+50.52φY(1)=0二、求条件概率分布φXY(xy)=P(Y=y)P(X=x,Y=y)=φY(y)φX,Y(x,y)φYX(yx)=P(X=x)P(Y=y,X=x)=φX(x)φX,Y(x,y)φXY(xy)=φY(y)φX,Y(x,y)=23+5y23x+5y2φYX(yx)=φX(x)φX,Y(x,y)=3x+353x+5y2y=0.7,x31φXY(X31,Y=0.7)=P(X31,X=0.7)=031φXY(x∣0.7)dx=03123+5(0.7)23x+5(0.7)2dx=.....x=0.7,y31φYX(Y31,X=0.7)=P(X31,X=0.7)=031φYX(y∣0.7)dx=03130.7+3530.7+5y2dy=...

损失函数

L ( c 1 , a 1 ) 为损失函数 其中, a 1 为事件, c 1 为自然状态的真值。 ( c 1 , a 1 ) ∈ C ∗ A c 为参数,属于参数空间 C a 为行为(事件),属于所有可能的事件集合 A L(c_1,a_1)为损失函数 \\其中,a_1为事件,c_1为自然状态的真值。 \\(c_1,a_1) \in C*A \\c为参数,属于参数空间C \\a为行为(事件),属于所有可能的事件集合A L(c1,a1)为损失函数其中,a1为事件,c1为自然状态的真值。(c1,a1)CAc为参数,属于参数空间Ca为行为(事件),属于所有可能的事件集合A

概率分布

  • 调查结果为随机变量 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) x i x_i xi为同一分布的独立观测值,发生的自然状态是 c c c(可理解为给定条件), P c ( A ) P_c(A) Pc(A)为事件A在自然状态c发生时出现的概率, φ \varphi φ为概率函数,即随机事件到其发生概率的映射。
  • Φ 为样本空间集合,其元素为某随机变量 X ( X ∈ Φ ) , X 包括很多事件 x 1 , x 2 . . . . , x n \Phi为样本空间集合,其元素为某随机变量X(X \in \Phi),X包括很多事件x_1,x_2....,x_n Φ为样本空间集合,其元素为某随机变量X(XΦ)X包括很多事件x1,x2....,xn
  • 连续
    P c ( A ) = ∫ A φ ( x ∣ c ) d x P_c(A)=\intop_A\varphi(x|c)dx Pc(A)=Aφ(xc)dx
    -离散
    P c ( A ) = ∑ x ∈ A φ ( x ∣ c ) P_c(A)=\sum_{x \in A}\varphi(x|c) Pc(A)=xAφ(xc)

期望值

μ ( x ) 为对 X 的数学期望,给定条件 c 值。 E c [ μ ( x ) ] = ∫ Φ μ ( x ) φ ( x ∣ c ) d x = ∑ x ∈ Φ μ ( x ) φ ( x ∣ c ) \mu(x)为对X的数学期望,给定条件c值。 \\E_c[\mu(x)]=\int_\Phi\mu(x)\varphi(x|c)dx \\=\sum_{x \in \Phi}\mu(x)\varphi(x|c) μ(x)为对X的数学期望,给定条件c值。Ec[μ(x)]=Φμ(x)φ(xc)dx=xΦμ(x)φ(xc)

1、设一个产品所需要的某原材料可用两种材料之一,这两种材料分别被A方和B方提供。
产品选择原材料导致产品使用寿命损失函数为:
L ( c , a 1 ) = ∣ 5 c 2 + 7 c ∣ L ( c , a 2 ) = ∣ 2 c + 8 c 2 ∣ 其中, a 2 表示产品所需原材料被 B 方提供, a 1 表示产品所需要原材料被 A 方提供, c 表示该材料的强度耐受度。 L(c,a_1)=|5c^2+7c| \\L(c,a_2)=|2c+8c^2| \\其中,a_2表示产品所需原材料被B方提供,a_1表示产品所需要原材料被A方提供,c表示该材料的强度耐受度。 \\ \\ L(c,a1)=∣5c2+7cL(c,a2)=∣2c+8c2其中,a2表示产品所需原材料被B方提供,a1表示产品所需要原材料被A方提供,c表示该材料的强度耐受度。
2、将二百万人民币投资某项目,或存入基金,其损失函数(单位:万元,负数表示收益)为:
设 a 1 表示投资某项目, a 2 表示存入基金, c 1 表示取得预期收益, c 2 表示没有取得预期收益。 L ( a 1 , c 1 ) = − 9 L ( a 1 , c 2 ) = 7 L ( a 2 , c 1 ) = − 28 L ( a 2 , c 2 ) = 50 设a_1表示投资某项目,a_2表示存入基金,c_1表示取得预期收益,c_2表示没有取得预期收益。 \\L(a_1,c_1)=-9 \\L(a_1,c_2)=7 \\L(a_2,c_1)=-28 \\L(a_2,c_2)=50 a1表示投资某项目,a2表示存入基金,c1表示取得预期收益,c2表示没有取得预期收益。L(a1,c1)=9L(a1,c2)=7L(a2,c1)=28L(a2,c2)=50
损失矩阵如下:

a-cc1c2
a1-97
a2-2850

参考文献

1、《统计决策理论与贝叶斯分析》
2. 《统计学(原书第五版)》

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值