抽象代数精解【11】

循环群

- < a > = { a r ∣ r ∈ Z } 元素 a 是群 G 的唯一元素, a 生成的子群叫 a 生成的循环群。 <a>=\{a^r|r \in Z\} \\元素a是群G的唯一元素,a生成的子群叫a生成的循环群。 <a>={arrZ}元素a是群G的唯一元素,a生成的子群叫a生成的循环群。

  • s = { a , b } ,且 a , b 满足关系 1. a 2 = b 3 = e 2. b a = a b 2 求 < a , b > 的所有元素 s=\{a,b\},且a,b满足关系 \\1.a^2=b^3=e \\2.ba=ab^2 \\求<a,b>的所有元素 s={a,b},且a,b满足关系1.a2=b3=e2.ba=ab2<a,b>的所有元素
    1. a − 1 = a , b − 1 = b 2 2. b k a = a b 2 k 这意味着 b a = a b 2 , b 2 a = a b 4 , 对于所有 b k a 的形式,都可将 b 和 a 互换位置,做一点小变换 b k a = a b 2 k 3. < a , b > = { a k b l ∣ k , l ∈ N ∪ { 0 } } = { e , a , b , b 2 , a b , a b 2 } 1.a^{-1}=a,b^{-1}=b^2 \\2.b^ka=ab^{2k} \\这意味着ba=ab^2,b^2a=ab^4, \\对于所有b^ka的形式,都可将b和a互换位置,做一点小变换 \\b^ka=ab^{2k} \\3.<a,b>=\{a^kb^l|k,l \in N\cup\{0\}\} \\=\{e,a,b,b^2,ab,ab^2\} 1.a1=a,b1=b22.bka=ab2k这意味着ba=ab2,b2a=ab4对于所有bka的形式,都可将ba互换位置,做一点小变换bka=ab2k3.<a,b>={akblk,lN{0}}={e,a,b,b2,ab,ab2}
  • Q 为有理数加群, Q ∗ 是非零有理数集关于数的乘法构成的群 Q为有理数加群,Q^*是非零有理数集关于数的乘法构成的群 Q为有理数加群,Q是非零有理数集关于数的乘法构成的群
    1. Q 中列出 < 1 2 > 中的元素 < 1 2 > = { 1 2 × n ∣ n ∈ Z } = { n 2 ∣ n ∈ Z } 2. Q ∗ 中列出 < 1 2 > 中的元素 < 1 2 > = { ( 1 2 ) n ∣ n ∈ Z } = { ( 1 2 n ) ∣ n ∈ Z } = { 2 − n ∣ n ∈ Z } 1.Q中列出<\frac 12>中的元素 \\<\frac 1 2>=\{\frac 1 2 \times n|n\in Z\}=\{\frac n 2|n\in Z\} \\2.Q^*中列出<\frac 12>中的元素 \\<\frac 1 2>=\{(\frac 1 2)^n|n\in Z\}=\{(\frac 1 {2^n})|n\in Z\}=\{2^{-n}|n\in Z\} 1.Q中列出<21>中的元素<21>={21×nnZ}={2nnZ}2.Q中列出<21>中的元素<21>={(21)nnZ}={(2n1)nZ}={2nnZ}

共扼

在群论中,“共轭”是一个核心概念,它涉及群元素之间的关系以及群的子群之间的关系。以下是对群共轭的详细解释:

一、群元素的共轭

  1. 定义:对于群G中的任意两个元素g和h,如果存在群G中的另一个元素x,使得 h = x g x − 1 h = xgx^{-1} h=xgx1(即h是g通过x的共轭作用得到的),则称g和h在群G中共轭,记作g~h。这里,x称为从g到h的共轭元素。

  2. 性质

    • 自反性:每个元素都与其自身共轭。
    • 对称性:如果g~h,则h~g(因为如果存在x使得 h = x g x − 1 h = xgx^{-1} h=xgx1,则 g = x − 1 h x g = x^{-1}hx g=x1hx)。
    • 传递性:如果g~h且h~k,则存在y使得 k = y h y − 1 k = yhy^{-1} k=yhy1,进而 k = y ( x g x − 1 ) y − 1 = ( y x ) g ( y x ) 1 k = y(xgx^{-1})y^{-1} = (yx)g(yx)^{1} k=y(xgx1)y1=(yx)g(yx)1,即g~k。但需要注意的是,这里的传递性并非总是成立于所有元素对之间,而是需要特定的条件(如考虑共轭类时)。
  3. 共轭类:群G中所有与给定元素g共轭的元素的集合称为g的共轭类。共轭类在群的表示论和分类中起着重要作用。

二、子群的共轭

  1. 定义:设G是一个群,H是G的一个子群。如果存在G中的一个元素g,使得 g H g − 1 gHg^{-1} gHg1(即H中每个元素h都被g共轭后得到的集合)仍然是G的子群,并且等于H本身(在某些定义中,可能只要求 g H g − 1 gHg^{-1} gHg1是G的子群,而不必等于H),则称H是G的正规子群(或自正规子群)。如果 g H g − 1 gHg^{-1} gHg1不等于H但仍是G的子群,则称H的这个子群为H在G中的共轭子群。

  2. 性质

    • 正规子群的共轭子群就是它本身。
    • 共轭子群与原子群有相同的阶(即元素个数相同)。
    • 共轭子群仍然是子群,且保留了原子群的一些重要性质(如阶、某些运算的封闭性等)。

三、群的共轭变换

群的共轭变换是群论中的一个重要概念,它指的是通过群中的元素对群中的其他元素进行共轭操作的过程。共轭变换具有多种重要的性质,如保持群的结构、自逆性、正交性、保持元素的阶、保持群的子群和正规子群结构以及保持群的同态映射等。这些性质使得共轭变换在群论的研究中具有广泛的应用价值。

四、应用

群的共轭作用在数学和物理学等多个领域都有广泛的应用。例如,在代数结构的研究中,共轭作用可以帮助我们更好地理解群的性质;在表示论中,共轭作用可以诱导出群表示之间的关系;在拓扑学和几何学中,共轭作用可以用于描述空间的共轭性质和构造几何图形;在物理学中,共轭作用则与对称性理论密切相关。此外,在计算机科学中,共轭作用也被用于编码理论、数据传输和路由问题等领域。

正规化子

正规化子(Normalizer)是群论中的一个重要概念,用于描述群的子集或元素与群中其他元素之间的交换性质。以下是关于正规化子的详细解释:

定义

设G为群,M是G的一个子集(或G的一个元素可以视为单元素子集)。M在G中的正规化子 N G ( M ) N_G(M) NG(M)定义为G中所有满足 g − 1 M g = M g^{-1}Mg=M g1Mg=M(对于所有g∈G)的元素g的集合。即:

N G ( M ) = g ∈ G ∣ g − 1 M g = M N_G(M) = {g ∈ G | g^{-1}Mg = M} NG(M)=gGg1Mg=M

当M是G的一个元素a时,a的正规化子 N G ( a ) N_G(a) NG(a)就是G中与a可交换的元素构成的集合,即 N G ( a ) = x ∈ G ∣ x a = a x N_G(a) = {x \in G | xa = ax} NG(a)=xGxa=ax

性质

  1. 子群性:正规化子 N G ( M ) N_G(M) NG(M)是G的子群。这是因为对于任意g, h ∈ N G ( M ) N_G(M) NG(M),有 ( g h ) − 1 M ( g h ) = h − 1 g − 1 M g h = h − 1 M h = M (gh)^{-1}M(gh) = h^{-1}g^{-1}Mgh = h^{-1}Mh = M (gh)1M(gh)=h1g1Mgh=h1Mh=M(由于g, h都在 N G ( M ) N_G(M) NG(M)中),所以 g h ∈ N G ( M ) gh ∈N_G(M) ghNG(M)。同时,单位元e和任意元素的逆元也在 N G ( M ) N_G(M) NG(M)中。

  2. 中心化子与正规化子的关系:对于G的子集M,M在G中的中心化子 C G ( M ) C_G(M) CG(M)定义为G中所有与M中所有元素都交换的元素构成的集合,即 C G ( M ) = g ∈ G ∣ g − 1 a g = a , ∀ a ∈ M C_G(M)= {g ∈ G | g^{-1}ag = a, ∀a ∈ M} CG(M)=gGg1ag=a,aM。显然,C_G(M)是N_G(M)的子集,因为与M中所有元素都交换的元素也一定满足 g − 1 M g = M g^{-1}Mg=M g1Mg=M

  3. 正规子群与正规化子的关系:若K是G的正规子群,则K的正规化子 N G ( K ) N_G(K) NG(K)就是G本身,因为正规子群的定义就是与G中所有元素都交换的子群。反之,若 N G ( K ) = G N_G(K)=G NG(K)=G,则K是G的正规子群。

应用

正规化子在群论中有广泛的应用,特别是在研究群的子群结构、共轭类、商群等方面。例如,利用正规化子可以计算与给定子集共轭的子集个数,这在研究群的分类和性质时非常有用。

示例

设G为对称群S_3,其元素为{e, (12), (13), (23), (123), (132)},其中e为恒等元素。考虑G的子集H =
{(12), (13)},则H的正规化子N_G(H)包含所有满足g^{-1}Hg=H的g∈G。通过计算可以发现,N_G(H) = {e,
(123), (132)}。这是因为这三个元素在左乘或右乘H后,H的元素仍然保持不变(或等价地,它们将H中的元素映射到H中的另一个元素)。

总之,正规化子是群论中一个重要的概念,它描述了群的子集或元素与群中其他元素之间的交换性质,并在群的结构研究中发挥着重要作用。

中心化子

群的中心化子的定义

群的中心化子(centralizer)是群论中的一个重要概念。具体来说,设G是一个群,g是G中的一个元素,则g在G中的中心化子C(g)定义为G中所有与g可交换的元素的集合,即C(g)
= {a ∈ G ∣ ag = ga}。类似地,如果S是G的一个子集,则S在G中的中心化子C(S)定义为G中所有与S中每个元素都可交换的元素的集合,即C(S) = {a ∈ G ∣ ag = ga, 对所有g ∈ S}。

群的中心化子的性质

  1. 非空性:对于群G中的任意元素g(或子集S),其中心化子C(g)(或C(S))都非空,因为至少包含单位元e(以及g自身,对于C(g)而言)。
  2. 子群性:C(g)和C(S)都是G的子群。这可以通过验证子群的定义(封闭性、结合律、单位元、逆元)来证明。特别地,C(g)的封闭性来自于可交换性的传递性,即如果a和g可交换,b和g可交换,那么(ab)g
    = a(bg) = a(gb) = (ag)b = g(ab)。
  3. 交换性:如果a在C(b)中,即a与b可交换,那么b也一定在C(a)中。这是因为可交换性是对称的。
  4. 包含关系:对于G的任意子集S和T,如果S ⊆ T,那么C(T) ⊆ C(S)。这是因为与T中所有元素都可交换的元素,自然也与S(T的子集)中所有元素都可交换。
  5. 正规性:C(S)是N(S)(S的正规化子)的正规子群。这可以通过共轭作用来证明。

群的中心化子的例子

以群S3为例,S3是包含3个元素的置换群的对称群,具体元素为{(1), (12), (13), (23), (123),
(132)}。我们可以计算其中某个元素的中心化子,例如:

  • 元素(1)(单位元)与S3中所有元素都可交换,因此C((1)) = S3。
  • 元素(12)与(1)和(12)可交换,但与S3中的其他元素不可交换,因此C((12)) = {(1), (12)}。

例题

例题:计算群S3中元素(123)的中心化子C((123))。

解答

  1. 列出群S3的所有元素:{(1), (12), (13), (23), (123), (132)}。
  2. 检查S3中哪些元素与(123)可交换。通过直接计算或利用置换的性质,我们可以发现只有(1)和(123)与(123)可交换,因为(123)(123)
    = (132)(123) = (1)(这里利用了置换的周期性)。
  3. 因此,C((123)) = {(1), (123)}。

注意:这里的解答是基于S3作为置换群的直观理解,对于更一般的群,可能需要更复杂的计算或证明。

半群

半群是一个重要的代数系统,它定义了一个非空集合以及该集合上的一个二元运算,且这个二元运算满足封闭性和结合律。具体来说,半群的基本定义如下:

定义

  • 非空集合:设S是一个非空集合。
  • 二元运算:在S上定义了一个二元运算“·”(或其他符号,如*),该运算满足以下两个条件:
    1. 封闭性:对于任意a, b ∈ S,都有a · b ∈ S。即,运算的结果仍然在集合S中。
    2. 结合律:对于任意a, b, c ∈ S,都有(a · b) · c = a · (b · c)。即,运算的分组方式不会影响最终结果。

满足上述两个条件的代数系统(S, ·)被称为一个半群,简记为S。

性质

半群具有一些基本的性质,包括但不限于:

  • 有限半群与幂等元:若S是一个有限半群,则S中一定存在幂等元。幂等元是指满足a · a = a的元素a。
  • 子半群:若U是S的一个非空子集,且对于任意u, v ∈ U,都有u · v ∈ U,则称U是S的子半群。
  • 同态与同构:半群之间可以定义同态和同构映射,这些映射保持运算的封闭性和结合律。

特殊类型

  • 幺半群:含有幺元(即恒等元)的半群称为幺半群。幺元e满足对于任意a ∈ S,都有e · a = a · e = a。
  • 交换半群:对于任意a, b ∈ S,都有a · b = b · a的半群称为交换半群。

应用

半群理论在数学、计算机科学、物理学等领域都有广泛的应用。例如,在自动机理论中,半群可以用来描述状态转换的封闭性和结合性;在密码学中,半群可以用来构造某些类型的密码算法;在组合数学中,半群可以用来研究序列和排列的某些性质。

总之,半群作为代数系统的一个基本结构,具有广泛的应用和深刻的理论意义。通过深入研究半群的性质、分类以及与其他代数结构的关系,我们可以更好地理解代数系统的本质和特性。
半群是一个代数系统,它由一个非空集合S和一个定义在S上的满足结合律的二元运算“*”组成。以下是一些关于半群的例题及其解答:

例题1:验证在集合S={x|x∈Z,x≥k}上,<Sk,+>是否是半群

解答

  • 首先,验证封闭性。对于任意x,y∈Sk,由于x,y都是整数且都大于等于k,那么x+y也是整数且大于等于k(整数加法满足封闭性,且k的加法不变性)。因此,x+y∈Sk,满足封闭性。
  • 其次,验证结合律。对于任意x,y,z∈Sk,由于整数加法满足结合律,即(x+y)+z=x+(y+z),所以<Sk,+>满足结合律。

综上,<Sk,+>是半群。

例题2:验证在集合S={a,b,c}上定义的运算Δ是否构成半群

解答

  • 假设运算Δ的定义如下(这里仅作为示例,实际定义可能不同):

    • aΔa = a + aΔb = c + aΔc = b + bΔa = c + bΔb = a + bΔc = b +
      cΔa = b + cΔb = c + cΔc = a
  • 首先,验证封闭性。由于运算Δ的结果仍然在集合S中,所以满足封闭性。

  • 其次,验证结合律。需要验证对于任意x,y,z∈S,(xΔy)Δz=xΔ(yΔz)。这通常通过运算表或具体计算来验证。由于这里只给出了示例定义,没有具体验证所有情况,但理论上应该检查所有可能的x,y,z组合。

如果所有组合都满足结合律,则<S,Δ>是半群。

例题3:证明[0,1]在乘法运算下是R的子半群

解答

  • 首先,验证封闭性。对于任意x,y∈[0,1],由于0≤x≤1且0≤y≤1,那么0≤xy≤1(实数乘法满足封闭性,且在[0,1]区间内保持)。因此,xy∈[0,1],满足封闭性。
  • 其次,验证结合律。由于实数乘法满足结合律,即(xy)z=x(yz),所以[0,1]在乘法运算下也满足结合律。

综上,[0,1]在乘法运算下是R的子半群。

注意

  • 在解答半群例题时,关键是验证封闭性和结合律。
  • 封闭性要求运算结果仍在原集合中。
  • 结合律要求运算的顺序不影响最终结果。
  • 具体的运算定义和集合元素可能因题目而异,因此需要根据题目给出的条件进行验证。

参考文献

1.文心一言,chatgpt
2.《抽象代数》
3.《近世代数》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值