高等代数精解【7】

基变换与坐标变换

基础

  • 在 V n 在V^n Vn中,任意n个线性无关的向量都可取作它的基或坐标系,但对不同基或坐标系,同一个向量的坐标一般是不同的。
  • 设 x 1 , x 2 , . . . , x n 是 v n 的旧基, y 1 , y 2 , . . . , y n 是其新基,则由基的定义可得。 设x_1,x_2,...,x_n是v^n的旧基,y_1,y_2,...,y_n是其新基,则由基的定义可得 。 x1,x2,...,xnvn的旧基,y1,y2,...,yn是其新基,则由基的定义可得。
    { y 1 = c 11 x 1 + c 21 x 2 + . . . + c n 1 x n y 2 = c 22 x 1 + c 22 x 2 + . . . + c n 2 x n . . . y n = c n 1 x 1 + c n 2 x 2 + . . . + c n n x n 或 ( y 1 , y 2 , . . . , y n ) = ( x 1 , x 2 , . . . , x n ) C ,此式称为基变换公式 其中矩阵 C = [ c 11 c 12 . . . c 1 n c 21 c 22 . . . c 2 n . . . c n 1 c n 2 . . . c n n ] 称为旧基到新基的过渡矩阵, 过渡矩阵是非奇异矩阵。 \begin{cases} y_1=c_{11}x_1+c_{21}x_2+...+c_{n1}x_n \\ y_2=c_{22}x_1+c_{22}x_2+...+c_{n2}x_n \\ ...\\ y_n=c_{n1}x_1+c_{n2}x_2+...+c_{nn}x_n \end{cases} \\或(y_1,y_2,...,y_n)=(x_1,x_2,...,x_n)C,此式称为基变换公式 \\其中矩阵 \\C= \begin{bmatrix} c_{11} & c_{12} & ... & c_{1n} \\ c_{21 }& c_{22} & ... & c_{2n}\\ ...\\ c_{n1 }& c_{n2} & ... & c_{nn}\\ \end{bmatrix}称为旧基到新基的过渡矩阵, \\过渡矩阵是非奇异矩阵。 y1=c11x1+c21x2+...+cn1xny2=c22x1+c22x2+...+cn2xn...yn=cn1x1+cn2x2+...+cnnxn(y1,y2,...,yn)=(x1,x2,...,xn)C,此式称为基变换公式其中矩阵C= c11c21...cn1c12c22cn2.........c1nc2ncnn 称为旧基到新基的过渡矩阵,过渡矩阵是非奇异矩阵。
  • 设 x ∈ V n 在上面所述旧新两基上的坐标依次是 ( ξ 1 , ξ 2 , . . . , ξ n ) T 与 ( η 1 , η 2 , . . . , η n ) T ,即有: 设x \in V^n 在上面所述旧新两基上的坐标依次是(\xi_1,\xi_2,...,\xi_n)^T与(\eta_1,\eta_2,...,\eta_n)^T,即有: xVn在上面所述旧新两基上的坐标依次是(ξ1,ξ2,...,ξn)T(η1,η2,...,ηn)T,即有:
    x = ξ 1 x 1 + ξ 2 x 2 + . . . + ξ n x n = η 1 y 1 + η 2 y 2 + . . . + η n y n x=\xi_1x_1+\xi_2x_2+...+\xi_nx_n=\eta_1y_1+\eta_2y_2+...+\eta_ny_n x=ξ1x1+ξ2x2+...+ξnxn=η1y1+η2y2+...+ηnyn
    • 基变换
      x = ( x 1 , x 2 , . . . , x n ) [ ξ 1 ξ 2 . . . ξ n ] = ( y 1 , y 2 , . . . , y n ) [ η 1 η 2 . . . η n ] = ( x 1 , x 2 , . . . , x n ) C [ η 1 η 2 . . . η n ] \\x=(x_1,x_2,...,x_n)\begin{bmatrix} \xi_1 \\ \xi_2 \\ ...\\ \xi_n \end{bmatrix} \\=(y_1,y_2,...,y_n)\begin{bmatrix} \eta_1 \\ \eta_2 \\ ...\\ \eta_n \end{bmatrix} \\=(x_1,x_2,...,x_n)C\begin{bmatrix} \eta_1 \\ \eta_2 \\ ...\\ \eta_n \end{bmatrix} x=(x1,x2,...,xn) ξ1ξ2...ξn =(y1,y2,...,yn) η1η2...ηn =(x1,x2,...,xn)C η1η2...ηn
    • 坐标变换
      [ ξ 1 ξ 2 . . . ξ n ] = C [ η 1 η 2 . . . η n ] [ η 1 η 2 . . . η n ] = C − 1 [ ξ 1 ξ 2 . . . ξ n ] \\\begin{bmatrix} \xi_1 \\ \xi_2 \\ ...\\ \xi_n \end{bmatrix}=C\begin{bmatrix} \eta_1 \\ \eta_2 \\ ...\\ \eta_n \end{bmatrix} \\\begin{bmatrix} \eta_1 \\ \eta_2 \\ ...\\ \eta_n \end{bmatrix}=C^{-1}\begin{bmatrix} \xi_1 \\ \xi_2 \\ ...\\ \xi_n \end{bmatrix} ξ1ξ2...ξn =C η1η2...ηn η1η2...ηn =C1 ξ1ξ2...ξn

基的过渡矩阵(transition matrix between bases)

基的过渡矩阵(transition matrix between bases)是线性代数中的一个重要概念,用于描述两个不同基之间的转换关系。具体来说,假设我们有一个向量空间 V V V,在 V V V中存在两个基 C = { v 1 , v 2 , … , v n } \mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} C={v1,v2,,vn} B = { w 1 , w 2 , … , w n } \mathcal{B} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\} B={w1,w2,,wn}。基的过渡矩阵就是将 B \mathcal{B} B基下的向量表示转换为 C \mathcal{C} C基下的矩阵。

过渡矩阵的定义

假设每个 C \mathcal{C} C基的向量 v i \mathbf{v}_i vi都可以用 B \mathcal{B} B基表示为:

v i = c 1 i w 1 + c 2 i w 2 + ⋯ + c n i w n 对于   i = 1 , 2 , … , n \mathbf{v}_i = c_{1i}\mathbf{w}_1 + c_{2i}\mathbf{w}_2 + \cdots + c_{ni}\mathbf{w}_n \quad \text{对于} \, i = 1, 2, \dots, n vi=c1iw1+c2iw2++cniwn对于i=1,2,,n

这里 c j i c_{ji} cji v i \mathbf{v}_i vi B \mathcal{B} B基下的坐标。于是,我们可以写出这些坐标的矩阵形式:

P C ← B = ( c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ) P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} PCB= c11c21cn1c12c22cn2c1nc2ncnn

这个矩阵 P C ← B P_{\mathcal{C} \leftarrow \mathcal{B}} PCB就是从基 B \mathcal{B} B变换到基 C \mathcal{C} C的过渡矩阵。

过渡矩阵的应用

  1. 向量表示的转换: 如果一个向量在基 B \mathcal{B} B下的表示为 [ v ] B [\mathbf{v}]_{\mathcal{B}} [v]B,那么在基 C \mathcal{C} C下的表示 [ v ] C [\mathbf{v}]_{\mathcal{C}} [v]C可以通过过渡矩阵 P C ← B P_{\mathcal{C} \leftarrow \mathcal{B}} PCB得到: [ v ] C = P B ← C ⋅ [ v ] B [\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{B} \leftarrow \mathcal{C}} \cdot [\mathbf{v}]_{\mathcal{B}} [v]C=PBC[v]B
    [ v ] B = P C ← B ⋅ [ v ] C [\mathbf{v}]_{\mathcal{B}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot [\mathbf{v}]_{\mathcal{C}} [v]B=PCB[v]C
    表示的实质就是在不同基的坐标。
  2. 线性变换矩阵的变换: 如果 T : V → V T: V \rightarrow V T:VV是一个线性变换,且 A B A_{\mathcal{B}} AB A C A_{\mathcal{C}} AC分别是 T T T在基 B \mathcal{B} B C \mathcal{C} C下的表示矩阵,那么它们之间的关系为:
    A C = P B ← C ⋅ A B A_{\mathcal{C}} = P_{\mathcal{B} \leftarrow \mathcal{C}} \cdot A_{\mathcal{B}} AC=PBCAB
    A B = P C ← B ⋅ A C = P B ← C − 1 ⋅ A C A_{\mathcal{B}} = P_{\mathcal{C} \leftarrow \mathcal{B}}\cdot A_{\mathcal{C}}= P_{\mathcal{B} \leftarrow \mathcal{C}}^{-1}\cdot A_{\mathcal{C}} AB=PCBAC=PBC1AC

线性变换矩阵的定义

线性变换矩阵的变换是线性代数中的一个核心概念,它描述了向量空间中的向量如何通过一个矩阵进行线性变换。
这种变换保持向量的线性组合性质不变,即如果两个向量 v ⃗ \vec{v} v w ⃗ \vec{w} w 经过线性变换后变为 v ′ ⃗ \vec{v'} v w ′ ⃗ \vec{w'} w ,那么这两个向量的线性组合 a v ⃗ + b w ⃗ a\vec{v} + b\vec{w} av +bw (其中 a a a b b b是标量)经过相同的线性变换后也会变为 a v ′ ⃗ + b w ′ ⃗ a\vec{v'} + b\vec{w'} av +bw
设有一个线性变换 T T T,它将一个 n n n维向量空间中的向量 v ⃗ \vec{v} v 映射到另一个 m m m维向量空间中的向量 v ′ ⃗ \vec{v'} v 。这个线性变换可以由一个 m × n m \times n m×n的矩阵 A A A来表示,即:

v ′ ⃗ = A v ⃗ \vec{v'} = A\vec{v} v =Av

其中, v ⃗ \vec{v} v n × 1 n \times 1 n×1的列向量, v ′ ⃗ \vec{v'} v m × 1 m \times 1 m×1的列向量, A A A m × n m \times n m×n的矩阵。

矩阵乘法与线性变换

矩阵乘法是实现线性变换的一种数学工具。
给定一个矩阵 A A A和一个向量 v ⃗ \vec{v} v ,通过矩阵乘法 A v ⃗ A\vec{v} Av ,我们可以得到向量 v ⃗ \vec{v} v 经过线性变换后的新向量 v ′ ⃗ \vec{v'} v
这个过程中,矩阵 A A A的每一行都可以看作是一个线性方程组的系数,而向量 v ⃗ \vec{v} v 则是这个方程组的解向量(或输入向量)。矩阵乘法的结果 v ′ ⃗ \vec{v'} v 则是这个方程组的新解向量(或输出向量)

线性变换的性质

  1. 线性性:线性变换保持向量的加法和数乘运算的线性性质。即,对于任意向量 v ⃗ \vec{v} v w ⃗ \vec{w} w 以及标量 a a a b b b,有: T ( a v ⃗ + b w ⃗ ) = a T ( v ⃗ ) + b T ( w ⃗ ) T(a\vec{v} + b\vec{w}) = aT(\vec{v}) + bT(\vec{w}) T(av +bw )=aT(v )+bT(w )

  2. 可逆性:如果线性变换 T T T对应的矩阵 A A A是可逆的(即存在逆矩阵 A − 1 A^{-1} A1),则这个线性变换是可逆的。逆变换 T − 1 T^{-1} T1由矩阵 A − 1 A^{-1} A1定义,即:
    v ⃗ = A − 1 v ′ ⃗ \vec{v} = A^{-1}\vec{v'} v =A1v

  3. 特征值和特征向量:线性变换还可能具有特征值和特征向量的性质。特征向量是在变换下仅发生伸缩(可能包括反向)而不发生旋转的向量,而特征值则是这个伸缩的比例因子。

示例

考虑一个二维平面上的旋转变换,它可以通过一个 2 × 2 2 \times 2 2×2的旋转矩阵来实现。例如,绕原点逆时针旋转 θ \theta θ角度的旋转变换矩阵为:

R ( θ ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} R(θ)=(cosθsinθsinθcosθ)

对于平面上的任意向量 v ⃗ = ( x y ) \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} v =(xy),经过旋转变换后得到的新向量为:

v ′ ⃗ = R ( θ ) v ⃗ = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) \vec{v'} = R(\theta)\vec{v} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} v =R(θ)v =(cosθsinθsinθcosθ)(xy)=(xcosθysinθxsinθ+ycosθ)

例子

例子 1:设向量空间 R 2 \mathbb{R}^2 R2有两个基 B = { ( 1 , 0 ) , ( 0 , 1 ) } \mathcal{B} = \{(1, 0), (0, 1)\} B={(1,0),(0,1)} C = { ( 1 , 1 ) , ( 1 , − 1 ) } \mathcal{C} = \{(1, 1), (1, -1)\} C={(1,1),(1,1)}。求从基 C \mathcal{C} C到基 B \mathcal{B} B的过渡矩阵。

解答

  1. 先用基 C \mathcal{C} C表示基 B \mathcal{B} B的每个向量: ( 1 , 0 ) = 1 2 ( 1 , 1 ) + 1 2 ( 1 , − 1 ) (1, 0) = \frac{1}{2}(1, 1) + \frac{1}{2}(1, -1) (1,0)=21(1,1)+21(1,1) ( 0 , 1 ) = 1 2 ( 1 , 1 ) − 1 2 ( 1 , − 1 ) (0, 1) = \frac{1}{2}(1, 1) - \frac{1}{2}(1, -1) (0,1)=21(1,1)21(1,1)
  2. 因此,过渡矩阵 P B ← C P_{\mathcal{B} \leftarrow \mathcal{C}} PBC为: P B ← C = ( 1 2 1 2 1 2 − 1 2 ) P_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} PBC=(21212121)

例题

例题 1:求 R 3 \mathbb{R}^3 R3中从标准基B { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } \{(1,0,0), (0,1,0), (0,0,1)\} {(1,0,0),(0,1,0),(0,0,1)}到基C { ( 1 , 1 , 1 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } \{(1,1,1), (0,1,0), (0,0,1)\} {(1,1,1),(0,1,0),(0,0,1)}的过渡矩阵。 设过渡矩阵为 P P P,则基C中的向量可以表示为基B中向量的线性组合,即:
( 1 1 1 ) = a ( 1 0 0 ) + b ( 0 1 0 ) + c ( 0 0 1 ) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} 111 =a 100 +b 010 +c 001
( 0 1 0 ) = d ( 1 0 0 ) + e ( 0 1 0 ) + f ( 0 0 1 ) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = d \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + e \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} 010 =d 100 +e 010 +f 001
( 0 0 1 ) = g ( 1 0 0 ) + h ( 0 1 0 ) + i ( 0 0 1 ) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = g \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + h \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} 001 =g 100 +h 010 +i 001
通过比较系数,我们可以得到以下方程组: { a = 1 , b = 1 , c = 1 d = 0 , e = 1 , f = 0 g = 0 , h = 0 , i = 1 \begin{cases}a = 1, \quad b = 1, \quad c = 1 \\d = 0, \quad e = 1, \quad f = 0 \\g = 0, \quad h = 0, \quad i = 1\end{cases} a=1,b=1,c=1d=0,e=1,f=0g=0,h=0,i=1 解这个方程组,我们得到: a = 1 , b = 1 , c = 1 , d = 0 , e = 1 , f = 0 , g = 0 , h = 0 , i = 1 a = 1, b = 1, c = 1, d = 0, e = 1, f = 0, g = 0, h = 0, i = 1 a=1,b=1,c=1,d=0,e=1,f=0,g=0,h=0,i=1 因此,过渡矩阵 P P P为: P = ( a d g b e h c f i ) = ( 1 0 0 1 1 0 1 0 1 ) P = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} P= abcdefghi = 111010001

基的过渡矩阵是线性代数中分析不同基下向量表示和线性变换的重要工具。了解如何构造和使用过渡矩阵对于掌握向量空间的结构非常关键。

过渡矩阵例子及相关例题

在线性代数中,过渡矩阵(或称基变换矩阵、转换矩阵)通常用于表示从一个基变换到另一个基的线性变换。以下是一个例子及相关例题:

例子:基的变换矩阵

假设在二维向量空间 R 2 \mathbb{R}^2 R2中,有两个基:

  • 标准基 e 1 = ( 1 0 ) , e 2 = ( 0 1 ) \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} e1=(10),e2=(01)
  • 另一组基 b 1 = ( 2 1 ) , b 2 = ( 1 3 ) \mathbf{b}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} b1=(21),b2=(13)

我们想找出矩阵的表示标准基 { e 1 , e 2 } \{ \mathbf{e}_1, \mathbf{e}_2 \} {e1,e2}转换到基 { b 1 , b 2 } \{ \mathbf{b}_1, \mathbf{b}_2 \} {b1,b2} 表示的基变换矩阵。

计算变换矩阵

要计算基变换矩阵 P P P,我们需要将 b 1 \mathbf{b}_1 b1 b 2 \mathbf{b}_2 b2 表示成标准基下的向量:

b 1 = ( 2 1 ) , b 2 = ( 1 3 ) \mathbf{b}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} b1=(21),b2=(13)

于是,基变换矩阵 P P P就是这两个向量作为列向量构成的矩阵:

P = ( 2 1 1 3 ) P = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} P=(2113)

这个矩阵 P P P 就是将向量从标准基 { e 1 , e 2 } \{ \mathbf{e}_1, \mathbf{e}_2 \} {e1,e2} 转换到 基 { b 1 , b 2 } \{ \mathbf{b}_1, \mathbf{b}_2 \} {b1,b2}的过渡矩阵。

例题:基变换的应用

问题:假设向量 v \mathbf{v} v在基 { b 1 , b 2 } \{ \mathbf{b}_1, \mathbf{b}_2 \} {b1,b2} 下的坐标为 v b = ( 3 2 ) \mathbf{v}_b = \begin{pmatrix} 3 \\ 2 \end{pmatrix} vb=(32),求它在标准基下的坐标 v e \mathbf{v}_e ve

解答

根据基变换矩阵 ( P ),我们可以计算:

v e = P × v b = ( 2 1 1 3 ) × ( 3 2 ) \mathbf{v}_e = P \times \mathbf{v}_b = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} ve=P×vb=(2113)×(32)

计算得:

v e = ( 2 × 3 + 1 × 2 1 × 3 + 3 × 2 ) = ( 8 9 ) \mathbf{v}_e = \begin{pmatrix} 2 \times 3 + 1 \times 2 \\ 1 \times 3 + 3 \times 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix} ve=(2×3+1×21×3+3×2)=(89)

因此,向量 v \mathbf{v} v在标准基下的坐标为 ( 8 9 ) \begin{pmatrix} 8 \\ 9 \end{pmatrix} (89)

过渡矩阵的例子

在描述过渡矩阵的例子时,我们考虑一个向量空间V及其两组基B和B’。假设B = {α1, α2, … , αn}是V的一组基,B’ = {β1, β2, … , βn}是V的另一组基。
过渡矩阵P就是满足以下关系的矩阵: 对于 B 中的任意向量 a ,其在 B ′ 中的坐标表示为 [ a ] ′ ,则有 [ a ] ′ = P [ a ] 。这里的 [ a ] 和 [ a ] ′ 分别表示向量 a 在基 B 和 B ′ 下的坐标。 对于B中的任意向量a,其在B'中的坐标表示为[a]',则有[a]' =P[a]。这里的[a]和[a]'分别表示向量a在基B和B'下的坐标。 对于B中的任意向量a,其在B中的坐标表示为[a],则有[a]=P[a]。这里的[a][a]分别表示向量a在基BB下的坐标。

例如, 设向量空间 V 的两组基分别为 B = α 1 , α 2 , α 3 和 B ′ = β 1 , β 2 , β 3 。 已知向量 α 1 , α 2 , α 3 在基 B ′ 下的坐标分别为 [ α 1 ] ′ = ( 1 , 0 , 2 ) , [ α 2 ] ′ = ( 0 , 1 , 1 ) , [ α 3 ] ′ = ( 1 , 1 , 0 ) 。 设向量空间V的两组基分别为B = {α1, α2, α3}和B' = {β1, β2, β3}。\\已知向量α1, α2,α3在基B'下的坐标分别为[α1]' = (1, 0, 2), [α2]' = (0, 1, 1), [α3]' = (1, 1, 0)。 设向量空间V的两组基分别为B=α1,α2,α3B=β1,β2,β3已知向量α1,α2,α3在基B下的坐标分别为[α1]=(1,0,2),[α2]=(0,1,1),[α3]=(1,1,0)根据过渡矩阵的定义,我们可以得到以下方程组:

[ 1 0 2 ] = P [ x 1 y 1 z 1 ] [ 0 1 1 ] = P [ x 2 y 2 z 2 ] [ 1 1 0 ] = P [ x 3 y 3 z 3 ] \begin{aligned} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} &= P \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} &= P \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \\ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} &= P \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} \end{aligned} 102 011 110 =P x1y1z1 =P x2y2z2 =P x3y3z3

其中, ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) , ( x 3 , y 3 , z 3 ) 分别是 α 1 , α 2 , α 3 在基 B 下的坐标。 解这个方程组即可得到过渡矩阵 P (x1, y1, z1), (x2, y2, z2), (x3, y3, z3)分别是α1, α2,α3在基B下的坐标。\\解这个方程组即可得到过渡矩阵P (x1,y1,z1),(x2,y2,z2),(x3,y3,z3)分别是α1,α2,α3在基B下的坐标。解这个方程组即可得到过渡矩阵P

过渡矩阵的例题

例题:设矩阵A为

A = [ 2 3 2 1 8 − 2 − 2 − 1 4 − 3 2 1 ] A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 8 & -2 \\ -2 & -1 & 4 \\ -3 & 2 & 1 \end{bmatrix} A= 212338122241

求矩阵A的若尔当标准形J,并求过渡矩阵P,使得 P − 1 A P = J P^{-1}AP = J P1AP=J

解题步骤

  1. 求特征值和特征向量:首先求出矩阵A的特征多项式,并找到其特征值。设特征值为λ,则|λE - A| = 0。解这个方程得到特征值λ1, λ2, …, λn。

  2. 求每个特征值对应的若尔当块:对于每个特征值λi,求出对应的若尔当块。这通常涉及到求解(A - λiE)X = 0的解空间,并可能需要进一步的计算来确定若尔当块的具体形式。

  3. 构造过渡矩阵P:过渡矩阵P的列向量由各个若尔当块对应的基向量组成。这些基向量可以是特征向量,或者是通过解线性方程组得到的广义特征向量。

  4. 验证结果:最后,验证 P − 1 A P P^{-1}AP P1AP是否等于J。如果等于,则P和J就是所求的过渡矩阵和若尔当标准形。

注意:由于具体的计算过程涉及复杂的线性代数运算,这里只给出了大致的解题步骤。在实际操作中,需要根据具体的矩阵A进行详细的计算。

以上是关于过渡矩阵的例子和例题的介绍。希望这些信息能帮助你更好地理解过渡矩阵的概念和求解方法。

进一步应用

基变换矩阵在许多线性代数和应用数学的领域中具有重要作用,例如:

  • 坐标系转换:在物理学和工程学中,经常需要在不同坐标系下表示物体的运动。
  • 线性映射的表示:线性变换在不同基下的矩阵表示之间的关系。
  • 特征向量和特征值分析:在不同基下的特征向量和特征值分析问题。 过渡矩阵是线性代数中的一个重要概念,它用于描述同一空间中两个不同基之间的转换关系。以下将分别给出过渡矩阵的例子和例题,以便更好地理解这一概念。

基变换与坐标变换定义

是线性代数中的两个重要概念,它们在多个领域都有广泛的应用,如数学、物理、工程等。以下是对这两个概念的详细解释:

一、基变换

定义:基变换是指在同一个向量空间内,由一组基向量变换为另一组基向量的过程。这里的“基”是指能够张成(或生成)该向量空间的一组线性无关的向量。

性质

  1. 可逆性:由于基变换是在同一个向量空间内进行的,因此变换是可逆的。即,如果有一组基向量M可以变换为另一组基向量N,那么N也可以变换回M。
  2. 过渡矩阵:基变换通常通过过渡矩阵来实现。设M和N是同一向量空间V的两组基,那么存在一个唯一的矩阵P(过渡矩阵),使得M乘以P等于N。即,M×P=N。
  3. 原点不变:在基变换过程中,原点(或称为零向量)的位置是不变的。这是因为基变换只是改变了向量空间中的坐标表示方式,而没有改变向量空间本身。

应用:基变换在解决线性方程组、矩阵对角化、特征值问题等方面都有重要应用。

二、坐标变换

定义:坐标变换是指空间中的一个点在不同坐标系(或基)下的坐标值之间的变换关系。

性质

  1. 相对性:同一个点在不同坐标系下的坐标值一般是不同的。这是因为不同的坐标系(或基)对空间的划分方式不同。
  2. 过渡矩阵的逆:在坐标变换中,通常需要使用过渡矩阵的逆来求解新坐标系下的坐标值。设点p在坐标系α下的坐标为x,在坐标系β下的坐标为y,且从α到β的过渡矩阵为A,则有 y = A − 1 × x y=A^{-1}×x y=A1×x
  3. 坐标原点不变:与基变换类似,坐标变换过程中坐标原点(或称为零点)的位置也是不变的。

应用:坐标变换在地图制作、地理信息系统、计算机图形学、机器人学等领域都有广泛应用。例如,在地图制作中,经常需要将地图从一种投影方式转换为另一种投影方式;在计算机图形学中,经常需要将图形从一个坐标系变换到另一个坐标系以实现图形的旋转、缩放等操作。

总结

基变换与坐标变换是线性代数中的两个重要概念,它们之间有着密切的联系。基变换是改变向量空间的坐标表示方式,而坐标变换则是描述同一个点在不同坐标系下的坐标值之间的变换关系。在实际应用中,这两个概念经常一起使用来解决各种问题。

基变换和坐标变换的区别与联系

是线性代数中的两个重要概念,它们之间既有联系又有区别。以下是对这两个概念之间区别的详细解释:

定义与性质

  • 基变换

定义:在同一个向量空间内,由一组基向量变换为另一组基向量的过程。这里的“基”是指能够张成(或生成)该向量空间的一组线性无关的向量。
性质:基变换是可逆的,即变换后的基向量组可以变换回原基向量组。基变换通常通过过渡矩阵来实现,该矩阵描述了两组基向量之间的线性关系。

  • 坐标变换

    • 定义:空间中的一个点在不同坐标系(或基)下的坐标值之间的变换关系。
    • 性质:坐标变换依赖于坐标系的选择,同一个点在不同坐标系下的坐标值一般是不同的。坐标变换通常需要使用过渡矩阵的逆来求解新坐标系下的坐标值。

关键点对比

  1. 操作对象
  • 基变换:操作的对象是向量空间中的基向量组,即改变空间的坐标表示框架。 *
    坐标变换:操作的对象是空间中的点或向量,即计算这些点在不同坐标系下的坐标值。
  1. 结果影响
  • 基变换:改变的是向量空间的坐标表示方式,不改变空间中点的实际位置或向量的实际方向和大小。 *
    坐标变换:直接给出空间中的点或向量在不同坐标系下的坐标值,反映了点的位置或向量的方向和大小在不同坐标系下的表示方式。
  1. 过渡矩阵的作用
  • 基变换:过渡矩阵描述了两组基向量之间的线性关系,用于实现基向量组之间的变换。 *
    坐标变换:过渡矩阵的逆用于计算点或向量在新坐标系下的坐标值,反映了坐标系之间的变换关系。

应用场景

  • 基变换:在解决线性方程组、矩阵对角化、特征值问题等方面有重要应用。通过基变换,可以将复杂的线性问题转化为更简单的形式来求解。
  • 坐标变换:在地图制作、地理信息系统、计算机图形学、机器人学等领域有广泛应用。通过坐标变换,可以实现图形的旋转、缩放、平移等操作,或者将地图从一种投影方式转换为另一种投影方式。

综上所述,基变换和坐标变换在定义、性质、操作对象、结果影响和应用场景等方面都存在明显的区别。基变换关注于向量空间的坐标表示方式的改变,而坐标变换则关注于空间中点或向量在不同坐标系下的坐标值之间的变换关系。

求解基变换和坐标变换的公式

通常涉及到线性代数中的矩阵运算。以下是详细的步骤和解释:

基变换

基变换是指在一个向量空间中,由一组基向量变换到另一组基向量的过程。
在基变换中,我们从一个基(如标准基B)转换到另一个基(如基C)。这种转换是通过过渡矩阵来实现的,该矩阵的列是目标基(基C)中的向量在原始基(基B)下的坐标。

已知基C中的向量为: c 1 = ( 1 1 1 ) , c 2 = ( 0 1 0 ) , c 3 = ( 0 0 1 ) \mathbf{c_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{c_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{c_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c1= 111 ,c2= 010 ,c3= 001

我们需要找到这些向量在标准基B下的表示,即找到系数 a , b , c , d , e , f , g , h , i a, b, c, d, e, f, g, h, i a,b,c,d,e,f,g,h,i,使得:

c 1 = a ( 1 0 0 ) + b ( 0 1 0 ) + c ( 0 0 1 ) \mathbf{c_1} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c1=a 100 +b 010 +c 001 c 2 = d ( 1 0 0 ) + e ( 0 1 0 ) + f ( 0 0 1 ) \mathbf{c_2} = d \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + e \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c2=d 100 +e 010 +f 001 c 3 = g ( 1 0 0 ) + h ( 0 1 0 ) + i ( 0 0 1 ) \mathbf{c_3} = g \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + h \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c3=g 100 +h 010 +i 001

通过比较系数,我们得到:

c 1 = 1 ( 1 0 0 ) + 1 ( 0 1 0 ) + 1 ( 0 0 1 ) \mathbf{c_1} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c1=1 100 +1 010 +1 001 c 2 = 0 ( 1 0 0 ) + 1 ( 0 1 0 ) + 0 ( 0 0 1 ) \mathbf{c_2} = 0 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c2=0 100 +1 010 +0 001 c 3 = 0 ( 1 0 0 ) + 0 ( 0 1 0 ) + 1 ( 0 0 1 ) \mathbf{c_3} = 0 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} c3=0 100 +0 010 +1 001

因此,过渡矩阵 P P P的列就是这些系数,即:

P = ( 1 0 0 1 1 0 1 0 1 ) P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} P= 111010001

这个矩阵 P P P就是从标准基B到基C的过渡矩阵。它允许我们将任何在基C下给出的向量坐标转换回在标准基B下的坐标,或者相反。

求解基变换的公式
假设有两个基向量组 B = { b 1 , b 2 , … , b n } B = \{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\} B={b1,b2,,bn} C = { c 1 , c 2 , … , c n } C = \{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_n\} C={c1,c2,,cn},它们都是同一个 n n n-维向量空间的基。

  1. 找出过渡矩阵:设过渡矩阵为 P P P,使得 C = B P C = BP C=BP。即, C C C 中的每个基向量都是 B B B 中基向量的线性组合,这些线性组合的系数构成了矩阵 P P P 的列。

    具体地,如果 c j = p 1 j b 1 + p 2 j b 2 + ⋯ + p n j b n ( j = 1 , 2 , … , n ) \mathbf{c}_j = p_{1j}\mathbf{b}_1 + p_{2j}\mathbf{b}_2 + \cdots + p_{nj}\mathbf{b}_n \quad (j = 1, 2, \ldots, n) cj=p1jb1+p2jb2++pnjbn(j=1,2,,n) P = ( p 11 p 12 ⋯ p 1 n p 21 p 22 ⋯ p 2 n ⋮ ⋮ ⋱ ⋮ p n 1 p n 2 ⋯ p n n ) P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} P= p11p21pn1p12p22pn2p1np2npnn

  2. 应用过渡矩阵:一旦得到了过渡矩阵 P P P,就可以用它来进行基变换。如果有一个向量 v \mathbf{v} v 在基 B B B 下的坐标为 x \mathbf{x} x(即 v = x 1 b 1 + x 2 b 2 + ⋯ + x n b n \mathbf{v} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \cdots + x_n\mathbf{b}_n v=x1b1+x2b2++xnbn),则 v \mathbf{v} v 在基 C C C 下的坐标 y \mathbf{y} y可以通过 y = P − 1 x \mathbf{y} = P^{-1} \mathbf{x} y=P1x 来计算。

坐标变换

  • 已知标准基B为: B = { ( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) } B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} B= 100 , 010 , 001 和基C为: C = { ( 1 1 1 ) , ( 0 1 0 ) , ( 0 0 1 ) } C = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} C= 111 , 010 , 001

我们需要找到过渡矩阵P,使得对于基C中的任意向量 c i \mathbf{c_i} ci,都有: c i = P b i ′ \mathbf{c_i} = P \mathbf{b_i'} ci=Pbi
其中 b i ′ \mathbf{b_i'} bi c i \mathbf{c_i} ci在标准基B下的坐标(但注意这里我们实际上不需要单独求出 b i ′ \mathbf{b_i'} bi,因为题目已经直接给出了基C的向量)
具体来说,P的列就是基C中向量在标准基B下的坐标。因此:

P = ( 1 0 0 1 1 0 1 0 1 ) P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} P= 111010001

这个矩阵P就是从标准基B到基C的过渡矩阵。

  1. 矩阵P允许我们将任何在基C下给出的向量坐标转换回在标准基B下的坐标
  2. 矩阵P的逆 P − 1 P^{-1} P1(如果存在)将执行相反的操作:将标准基B下的坐标转换为基C下的坐标。
  • 在线性代数中,过渡矩阵是用来表示从一个基到另一个基的线性变换的矩阵。 坐标变换是指同一个点或向量在不同坐标系下的坐标值之间的变换。这通常是通过过渡矩阵的逆来实现的。
  • 对于给定的两个基,比如标准基B和基C,过渡矩阵P的列是基C中的向量在基B下的坐标。

求解坐标变换的公式

  1. 已知条件:假设有两个坐标系 α \alpha α β \beta β,设 A A A α → β \alpha \rightarrow \beta αβ基变换中过渡矩阵.
  2. 应用过渡矩阵的逆:如果点 P P P 在坐标系 α \alpha α 下的坐标为 x \mathbf{x} x,则 P P P 在坐标系 β \beta β 下的坐标 y \mathbf{y} y 可以通过 y = A − 1 x \mathbf{y} = A^{-1}\mathbf{x} y=A1x 来计算。

注意

  • 在实际应用中,过渡矩阵 A A A(或 P P P)可能是直接给出的,也可能是通过其他方式(如解线性方程组)求得的。
  • 如果过渡矩阵不是方阵或不可逆,则可能需要进行额外的处理或考虑其他方法。
  • 在计算机图形学和机器人学等领域中,坐标变换通常涉及到平移、旋转和缩放等多种变换的复合,这些变换可以通过矩阵乘法来实现。

基变换在解决线性方程组、矩阵对角化、特征值问题中扮演着重要的角色

以下是这些应用的具体解释:

1. 解决线性方程组

在解决线性方程组时,基变换可以用于简化方程组的系数矩阵,使其更容易求解。具体来说,如果线性方程组的系数矩阵 A A A
可以通过基变换转化为一个更简单的形式(如行阶梯形矩阵或单位矩阵),那么求解过程将大大简化。

然而,更常见的是,在求解过程中,我们可能会使用基变换来找到方程组的解空间的一个更好的表示。例如,通过找到方程组解空间的一组基(即基础解系),我们可以将任意解表示为这些基的线性组合。这实际上是通过基变换将解空间从原始坐标系变换到了一个由基础解系张成的新坐标系。

2. 矩阵对角化

矩阵对角化是线性代数中的一个重要概念,它允许我们将一个矩阵表示为对角矩阵的形式,这通常可以简化矩阵的运算和性质分析。在矩阵对角化的过程中,基变换起着关键作用。

具体来说,如果矩阵 A A A 可以对角化,那么存在一个可逆矩阵 P P P(由 A A A 的特征向量构成)和一个对角矩阵 D D D,使得 A = P D P − 1 A = PDP^{-1} A=PDP1。这里的 P P P 实际上是一个过渡矩阵,它实现了从原始基(即标准坐标系的基向量)到由 A A A
的特征向量构成的新基的变换。通过这个基变换,我们可以将 A A A 变换为一个对角矩阵 D D D,其对角线上的元素是 A A A 的特征值。

3. 特征值问题

特征值问题是线性代数中的一个核心问题,它涉及到求解矩阵的特征值和特征向量。在解决特征值问题时,基变换同样发挥着重要作用。

首先,求解特征值问题通常涉及到求解特征多项式 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0,其中 A A A
是给定的矩阵, λ \lambda λ 是特征值, I I I
是单位矩阵。然而,在某些情况下,直接求解这个多项式可能很困难。此时,我们可以通过基变换(如相似变换)将 A A A
变换为一个更易于处理的形式,从而简化求解过程。

其次,一旦我们找到了矩阵 A A A 的特征值,我们就需要找到对应的特征向量。这通常涉及到解线性方程组 ( A − λ I ) x = 0 (A - \lambda I)\mathbf{x} = \mathbf{0} (AλI)x=0。在这个过程中,基变换同样可以帮助我们找到更简洁、更直观的解。具体来说,如果我们已经通过基变换将 A A A
变换为了一个对角矩阵或接近对角矩阵的形式,那么求解特征向量将变得非常简单。

综上所述,基变换在解决线性方程组、矩阵对角化、特征值问题中都具有重要的应用价值。通过基变换,我们可以将复杂的问题转化为更简单、更直观的形式,从而更容易地找到解决方案。

4。基变换在解决线性方程组的应用

例子: 考虑线性方程组 { 2 x + y − z = 8 − 3 x − y + 2 z = − 11 − 2 x + y + 2 z = − 3 \begin{cases} 2x + y - z = 8 \\ -3x - y + 2z = -11 \\ -2x + y + 2z = -3 \end{cases} 2x+yz=83xy+2z=112x+y+2z=3

首先,我们可以将方程组的系数矩阵 A A A 写出: A = ( 2 1 − 1 − 3 − 1 2 − 2 1 2 ) A = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} A= 232111122

虽然在这个例子中我们不会直接进行基变换来简化矩阵(因为通常我们会使用行变换如高斯消元法),但我们可以想象如果系数矩阵在某些基下变得更容易处理,那么求解过程将会简化。不过,更常见的是,在找到方程组的解空间后,我们可能会通过基变换来找到解的一个更直观的表示。

然而,为了说明基变换的思想,我们可以考虑将解向量从标准基(即坐标系的自然基)变换到由方程组的特解和通解构成的基。这通常是在解出特解和通解之后进行的,而不是在求解过程中直接进行基变换。

5.基变换在矩阵对角化的应用

例题: 给定矩阵 A = ( 2 1 1 2 ) A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} A=(2112) 求一个可逆矩阵 P P P 和一个对角矩阵 D D D,使得 A = P D P − 1 A = PDP^{-1} A=PDP1

: 首先,我们需要找到矩阵 A A A 的特征值和对应的特征向量。

特征多项式 f ( λ ) = det ⁡ ( A − λ I ) = ( 2 − λ ) ( 2 − λ ) − 1 = λ 2 − 4 λ + 3 f(\lambda) = \det(A - \lambda I) = (2-\lambda)(2-\lambda) - 1 = \lambda^2 - 4\lambda + 3 f(λ)=det(AλI)=(2λ)(2λ)1=λ24λ+3

解得特征值 λ 1 = 1 , λ 2 = 3 \lambda_1 = 1, \lambda_2 = 3 λ1=1,λ2=3

对于 λ 1 = 1 \lambda_1 = 1 λ1=1,解方程组 ( A − I ) x = 0 (A - I)\mathbf{x} = \mathbf{0} (AI)x=0,得到特征向量
v 1 = ( 1 1 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v1=(11)

对于 λ 2 = 3 \lambda_2 = 3 λ2=3,解方程组 ( A − 3 I ) x = 0 (A - 3I)\mathbf{x} = \mathbf{0} (A3I)x=0,得到特征向量
v 2 = ( 1 − 1 ) \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} v2=(11)

P = ( 1 1 1 − 1 ) P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} P=(1111),则 P P P 是可逆的,且 D = P − 1 A P = ( 1 2 1 2 1 2 − 1 2 ) ( 2 1 1 2 ) ( 1 1 1 − 1 ) = ( 1 0 0 3 ) D = P^{-1}AP = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} D=P1AP=(21212121)(2112)(1111)=(1003)
这里,基变换是通过将原始坐标系(由标准基向量构成)变换为由 A A A 的特征向量构成的新坐标系来实现的。

6.基变换在特征值问题的应用

实际上,在解决特征值问题时,我们已经在隐式地使用了基变换。当我们找到矩阵 A A A
的特征值和特征向量时,我们实际上是在寻找一个基(由特征向量构成),使得在这个新基下,矩阵 A A A
的表示变得非常简单(即对角矩阵)。这个过程本身就是一种基变换。

因此,在上面的矩阵对角化例题中,我们已经展示了基变换在特征值问题中的应用。通过找到矩阵的特征向量,并将它们作为新坐标系的基,我们可以将矩阵变换为一个对角矩阵,从而更容易地分析矩阵的性质。

参考文献

1.文心一言
2.《矩阵论》
3.ChatGPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值