物理学基础精解【2】

矢量运动

矢量

基础

  • 矢量的分量是该矢量在相应轴上的投影。
    在这里插入图片描述
    a x = a c o o s Q , a y = a s i n Q a_x=acoosQ,a_y=asinQ ax=acoosQ,ay=asinQ
  • 求解矢量分量的过程称为分解矢量。
  • 矢量的投影是线性代数和向量分析中的一个重要概念,它描述了一个向量在另一个向量方向上的“分量”大小。具体来说,向量 a \mathbf{a} a在向量 b \mathbf{b} b上的投影是一个标量,表示 a \mathbf{a} a沿着 b \mathbf{b} b方向上的“长度”或“大小”。
  • 已知分量为 a x 和 a y a_x和a_y axay,欲求出它的大小和角度标记
    a = a x 2 + a y 2 t a n Q = a y a x a=\sqrt{a_x^2+a_y^2} \\tanQ=\frac {a_y}{a_x} a=ax2+ay2 tanQ=axay
  • 当某人发射激光束以角度为斜向上 60 度,向前上方从地面射向空中, 当激光束的末尾距离地面某人所处的为 950 米时, 请问,该激光束末尾向下和向前离该人有多远? a x = 950 ∗ c o s ( 6 0 ∘ ) = 475 a y = 950 ∗ s i n ( 6 0 ∘ ) = 822.72 当某人发射激光束以角度为斜向上60度,向前上方从地面射向空中, \\当激光束的末尾距离地面某人所处的为950米时, \\请问,该激光束末尾向下和向前离该人有多远? \\a_x=950*cos(60^\circ)=475 \\a_y=950*sin(60^\circ)=822.72 当某人发射激光束以角度为斜向上60度,向前上方从地面射向空中,当激光束的末尾距离地面某人所处的为950米时,请问,该激光束末尾向下和向前离该人有多远?ax=950cos(60)=475ay=950sin(60)=822.72
julia> angle_deg=60
60

julia> angle_rad=angle_deg*pi/180
1.0471975511965976

julia> cos(angle_rad)
0.5000000000000001

julia> sin(angle_rad)
0.8660254037844386

julia> sin(angle_rad)*950
822.7241335952167

julia> cos(angle_rad)*950
475.0000000000001
  • Julia语言中cos函数
    用于计算给定角度(以弧度为单位)的余弦值。这个函数是Julia标准库中的一部分,特别是它位于math模块中,但通常不需要显式地调用这个模块,因为Julia会自动引入许多常用的数学函数。

要使用cos函数,你只需直接调用它并传入一个以弧度为单位的角度值。下面是一个简单的例子:

# 计算π/4(即45度角,转换为弧度)的余弦值
angle_rad = pi / 4
cosine_value = cos(angle_rad)

println(cosine_value)

在这个例子中,pi是Julia中的一个常量,表示π的值。我们将π除以4得到π/4(即45度角转换为弧度),然后计算这个角度的余弦值,并将结果打印出来。

如果你有一个以度为单位的角度,并且想要计算它的余弦值,你需要先将这个角度转换为弧度。这可以通过将角度乘以π并除以180来实现:

# 假设我们有一个以度为单位的角度
angle_deg = 45

# 将角度转换为弧度
angle_rad = angle_deg * pi / 180

# 计算余弦值
cosine_value = cos(angle_rad)

println(cosine_value)

这样,你就可以使用Julia的cos函数来计算任意角度(以弧度为单位)的余弦值了。

定义

a \mathbf{a} a b \mathbf{b} b是两个非零向量, θ \theta θ a \mathbf{a} a b \mathbf{b} b之间的夹角( 0 ≤ θ ≤ π 0 \leq \theta \leq \pi 0θπ)。则向量 a \mathbf{a} a在向量 b \mathbf{b} b上的投影的长度为:

∣ proj b a ∣ = ∣ a ∣ cos ⁡ θ |\text{proj}_{\mathbf{b}}\mathbf{a}| = |\mathbf{a}|\cos\theta projba=acosθ

其中, ∣ a ∣ |\mathbf{a}| a ∣ b ∣ |\mathbf{b}| b分别是向量 a \mathbf{a} a b \mathbf{b} b的模(长度)。

计算方法

  1. 使用点积(内积)
    向量 a \mathbf{a} a b \mathbf{b} b的点积定义为:
    a ⋅ b = ∣ a ∣ × ∣ b ∣ × cos ⁡ θ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \times |\mathbf{b}| \times \cos\theta ab=a×b×cosθ
    因此,向量 a \mathbf{a} a在向量 b \mathbf{b} b上的投影的长度也可以表示为:
    ∣ proj b a ∣ = a ⋅ b ∣ b ∣ |\text{proj}_{\mathbf{b}}\mathbf{a}| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} projba=bab

  2. 方向
    投影不仅有大小,还有方向。具体来说,如果 θ < π 2 \theta < \frac{\pi}{2} θ<2π(即 a \mathbf{a} a b \mathbf{b} b之间的夹角为锐角或零角),则投影的方向与 b \mathbf{b} b的方向相同;如果 θ > π 2 \theta > \frac{\pi}{2} θ>2π(即 a \mathbf{a} a b \mathbf{b} b之间的夹角为钝角),则投影的方向与 b \mathbf{b} b的方向相反。

示例

假设有两个向量 a = ( 2 , 3 ) \mathbf{a} = (2, 3) a=(2,3) b = ( 4 , 1 ) \mathbf{b} = (4, 1) b=(4,1),我们需要计算 a \mathbf{a} a b \mathbf{b} b上的投影。

  1. 首先计算两个向量的模:
    ∣ a ∣ = 2 2 + 3 2 = 13 |\mathbf{a}| = \sqrt{2^2 + 3^2} = \sqrt{13} a=22+32 =13
    ∣ b ∣ = 4 2 + 1 2 = 17 |\mathbf{b}| = \sqrt{4^2 + 1^2} = \sqrt{17} b=42+12 =17

  2. 接着计算两个向量的点积:
    a ⋅ b = 2 × 4 + 3 × 1 = 11 \mathbf{a} \cdot \mathbf{b} = 2 \times 4 + 3 \times 1 = 11 ab=2×4+3×1=11

  3. 最后计算投影的长度:
    ∣ proj b a ∣ = 11 17 |\text{proj}_{\mathbf{b}}\mathbf{a}| = \frac{11}{\sqrt{17}} projba=17 11

注意:这个结果是投影的长度,而不是投影向量本身。如果需要得到投影向量,还需要将这个长度与 b \mathbf{b} b的单位向量相乘。

矢量的分量

是描述矢量在不同方向上的“大小”或“长度”的数值。在二维或三维空间中,一个矢量可以通过其分量来完全定义。这些分量通常与坐标轴的方向相关联。

二维空间中的矢量分量

在二维平面直角坐标系中,一个矢量 a \mathbf{a} a可以由其 x x x分量和 y y y分量来表示,即:

a = ( a x , a y ) \mathbf{a} = (a_x, a_y) a=(ax,ay)

其中, a x a_x ax是矢量 a \mathbf{a} a x x x轴方向上的分量, a y a_y ay是矢量 a \mathbf{a} a y y y轴方向上的分量。这两个分量都是标量,表示矢量在各自方向上的投影长度。

三维空间中的矢量分量

类似地,在三维空间直角坐标系中,一个矢量 a \mathbf{a} a可以由其 x x x分量、 y y y分量和 z z z分量来表示,即:

a = ( a x , a y , a z ) \mathbf{a} = (a_x, a_y, a_z) a=(ax,ay,az)

其中, a x a_x ax a y a_y ay a z a_z az分别是矢量 a \mathbf{a} a x x x轴、 y y y轴和 z z z轴方向上的分量。这三个分量也都是标量,表示矢量在各自方向上的投影长度。

分量的计算

在已知矢量坐标的情况下,分量的计算是直接的。但在某些情况下,我们可能需要通过其他方式(如投影)来计算分量。例如,在二维空间中,如果知道矢量 a \mathbf{a} a和另一个单位矢量 u \mathbf{u} u(其方向为 x x x轴或 y y y轴),则 a \mathbf{a} a u \mathbf{u} u方向上的分量可以通过投影来计算,即:

proj u a = ∣ a ∣ cos ⁡ θ \text{proj}_{\mathbf{u}}\mathbf{a} = |\mathbf{a}|\cos\theta projua=acosθ

但在这个特定情况下,由于 u \mathbf{u} u是单位矢量且方向与坐标轴一致,因此投影实际上就是 a \mathbf{a} a在该坐标轴上的分量。

示例

假设在二维空间中有一个矢量 a = ( 4 , 3 ) \mathbf{a} = (4, 3) a=(4,3),则:

  • a x = 4 a_x = 4 ax=4 a \mathbf{a} a x x x轴上的分量。
  • a y = 3 a_y = 3 ay=3 a \mathbf{a} a y y y轴上的分量。

在三维空间中,如果有一个矢量 b = ( 1 , − 2 , 3 ) \mathbf{b} = (1, -2, 3) b=(1,2,3),则:

  • b x = 1 b_x = 1 bx=1 b \mathbf{b} b x x x轴上的分量。
  • b y = − 2 b_y = -2 by=2 b \mathbf{b} b y y y轴上的分量。
  • b z = 3 b_z = 3 bz=3 b \mathbf{b} b z z z轴上的分量。

参考文献

1.《物理学基础》
2. 文心一言
3. chatgpt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值