拓扑排序

拓扑排序

一、什么是拓扑排序

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
每个顶点出现且只出现一次。
若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

引用自csdn神奕的博客

那么如何在一个DAG中找出他的拓扑排序呢?
1.从DAG图中选择一个入度为0的点并输出
2.删除这个点及与它相连的边
3.重复进行12知道DAG图为空图或当前图中不存在入度为0的点为止(此时图自环)
示例

应该很生动形象了吧hhhh
一个DAG图中可以有一个或多个拓扑排序,比如上图中就还有另外的拓扑排序

二、拓扑排序的应用

通常用来“排序”具有依赖关系的任务
如工程建设中需要先做什么,再做什么的任务,比赛只告诉你谁打败了谁,让你排出名次的任务

三、代码实现

来填坑了!在这里插入图片描述
代码实现的话,思路是存一下图,然后开一个数组存每个点的入度,再开一个队列q,将入度非零的点入队,从队列顶端取出一个顶点,删除与这个顶点相连的边,将该顶点出队然后对下一个入度为0的点出队即可。

那么我们来看一个题嘿嘿嘿
uva 10305 Ordering Tasks
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oOYyhUaB-1578809825067)(image/uva10305.png)]
题意大概就是给你n个点,m条边,接下来m行个a,b。需要你求出它的拓扑排序中的一种(此题可以有多种解只需要求出一组解),此题的输入保证了不会有自环的情况。
那么这就是一个简单的模板题,数据量很小用邻接矩阵存图也可
给出邻接矩阵的ac代码:

#include <iostream>
#include <queue>
#include <string.h>
using namespace std;
const int N = 505;
int n, m, in[N], a[N];
int mp[N][N];
void tp()
{
	queue<int> q;
	int l = 0;
	while (!q.empty()) q.pop();
	for (int i = 1; i <= n; i++)
		if (!in[i]) q.push(i); //入度非0,入队
	int temp = q.front();
	while (!q.empty()) {
		a[l++] = temp;//存结果
		q.pop();
		for (int i = 1; i <= n; i++) {
			if (mp[temp][i]) {
				in[i]--;
				if (!in[i]) q.push(i);
			}
		}
		temp = q.front();
	}
	for (int i = 0; i < n; i++) cout << a[i] << " ";
	cout << endl;
}
int main()
{
	while (cin >> n >> m) {
		if (n == m && n == 0) break;
		memset(mp, 0, sizeof(mp));
		memset(in, 0, sizeof(in));
		for (int i = 1; i <= m; i++) {
			int a, b;
			cin >> a >> b;
			if (!mp[a][b]) {//存图
				mp[a][b] = 1;
				in[b]++;
			}
		}
		tp();
	}
}


那么在实际的做题中,存图肯定是用邻接表的,这里是邻接表存图的做法:

#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n,m;
vector<int> g[N];
int in[N];
queue<int> q;
void topo(){
    while(!q.empty()) q.pop();
    for(int i=1;i<=n;i++)
        if(!in[i]) q.push(i);
    int sum=1;
    while(!q.empty()){
        int temp=q.front();
        q.pop();
        cout<<temp<<" ";
        for(int i=0;i<g[temp].size();i++){//删除边
            in[g[temp][i]]--;
            if(in[g[temp][i]]==0) q.push(g[temp][i]);
        }
    }
    cout<<endl;
}
int main(){
    while(cin>>n>>m){
        if(n==m&&n==0) break;
        for(int i=0;i<=n;i++) g[i].clear();
        memset(in,0,sizeof(in));
        if(n==0&&n==m) break;
        for(int i=1;i<=m;i++){
            int a,b;
            cin>>a>>b;
            g[a].push_back(b);
            in[b]++;
        }
        topo();
    }
    return 0;
}

还有常见的输出字典序最小的拓扑排序,只需要使用一个优先队列即可
hdu1285

struct cmp1{
    bool operator()(int &a,int &b){
        return a>b;
    }
};
priority_queue<int,vector<int>,cmp1>q;

ac代码:

#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
vector<int>g[550];
int indegree[550];
int ss[550];
int ans;
struct cmp1{
    bool operator()(int &a,int &b){
        return a>b;
    }
};
int topo(int n){
    priority_queue<int,vector<int>,cmp1>q;
    int i;
    for(i=1;i<=n;i++){
        if(indegree[i]==0)
            q.push(i);
    }
    int u,gg;
    ans=0;
    gg=0;
    ans=0;
    while(!q.empty()){
        if(q.size()!=1)gg=1;
        u=q.top();q.pop();
        ss[++ans]=u;
        for(i=0;i<g[u].size();i++){
            indegree[g[u][i]]--;
            if(indegree[g[u][i]]==0)q.push(g[u][i]);
        }
    }
    if(ans!=n)return -1;//无法排序
    if(gg==1)return 2;//仅有一种排序方式
    return 1;
}
int main(){
    int f1,f2,t2;
    int i,n,m;
    while(cin>>n>>m){
    if(n==m&&n==0) break;
    memset(indegree,0,sizeof(indegree));
    memset(g,0,sizeof(g));
    memset(ss,0,sizeof(ss));
    for(i=1;i<=m;i++){
        cin >> f1 >> f2;
        indegree[f2]++;
        g[f1].push_back(f2);
    }
    t2=topo(n);
    for(i=1;i<ans;i++)
        cout << ss[i] << " ";
    cout << ss[i] << endl;
    }
    return 0;
}

再来几题
hdu2647
hdu4109

参考博客
https://blog.csdn.net/lisonglisonglisong/article/details/45543451

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值