数论-欧拉函数

欧拉函数

定义:

1 1 1~ n n n中与 n n n互质的数的个数, a , b a,b a,b互质即 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1

公式:

N = p 1 φ 1 ∗ p 2 φ 2 ∗ . . . . . . ∗ p k φ k N=p_1^{\varphi 1}*p_2^{\varphi 2}*......*p_k^{\varphi k} N=p1φ1p2φ2......pkφk
φ ( n ) = N ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ . . . . . . ∗ ( 1 − 1 p k ) \varphi (n)=N*(1-\frac{1}{p_1})*(1-\frac{1}{p_2})*......*(1-\frac{1}{p_k}) φ(n)=N(1p11)(1p21)......(1pk1)
证明:基于容斥原理,详细太复杂可看别的博客

复杂度:

单次 n \sqrt n n ,可线性求1-n的欧拉函数

应用:

欧拉定理:
a a a n n n互质,则 a φ ( n ) ≡ 1 ( m o d    n ) a^{\varphi (n)} \equiv 1 (\mod n) aφ(n)1(modn)
推论(费马定理):
若p为质数时
a φ ( p ) ≡ 1 ( m o d    p ) a^{\varphi (p)} \equiv 1 (\mod p) aφ(p)1(modp)
a p − 1 ≡ 1 ( m o d    p ) a^{p-1 } \equiv 1(\mod p) ap11(modp)

板子:

//单次
#include<bits/stdc++.h>
using namespace std;
int main(){
    int t;cin>>t;while(t--){
        int n;
        cin>>n;
        int res=n;
        for(int i=2;i<=n/i;i++){
            if(n%i==0){
                res=res/i*(i-1);
                while(n%i==0) n/=i;
            }
        }
        if(n>1) res=res/n*(n-1);
        
        cout<<res<<endl;
    }
}
//线性求1-n的欧拉函数
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数

bool st[N];         // st[x]存储x是否被筛掉(合数标记)
void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            // 质数
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

int main(int argc, char const *argv[]) {
    get_eulers(1e6);
    int n;
    cin>>n;
    long long res=0;
    for(int i=1;i<=n;i++){
        res+=euler[i];
    }
    cout<<res<<endl;
    return 0;
}

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页