CNN感性认识(四)——深度学习的基本认识

参考资料:http://neuralnetworksanddeeplearning.com/chap6.html

一、介绍卷积神经网络(convolutional neural network)
① 感受野(local receiptive fields)
以MNITST为例,以前我们总是把神经网络的输入看成一条线,现在我们将它们看成一个28*28的方阵。
这里写图片描述
以前输入层到隐层是全连接的,现在只是某一部分输入神经元与某一部分隐层神经元连接,连接到隐层的小区域被称为感受野。
这里写图片描述
这里写图片描述
这里写图片描述
如果一个隐层神经元对应5*5的感受野,就可以得到24*24的隐层。
一般来说,感受野移动的步长是1,有时也可能取步长为2.
②共享权重和偏置
我们将令24*24的隐层神经元使用相同的偏置。
换句话说,对第j,k个隐层神经元,如前所述,感受野是5*5,输出是:
这里写图片描述
有时,我们称输入层到隐层的映射为特征映射(feature map)
将定义特征映射的权重称为共享权重(shared weight)
共享的权重和偏置用来定义核(kernal)或者滤波器(filter)
feature map不一定只有一个,1个map映射一种特征,多个map映射多种特征,产生多张隐层的方阵。
这里写图片描述
③池化层(pooling)
池化层是指,提取卷积层的输出,准备一个浓缩过的特征映射。
比如说,池化层中的每个单元浓缩2*2区域的神经元,池化的一种普遍方式是最大值池化(max-pooling),即一个pooling单元只输出2*2区域中最大的激励。
由于卷积层的输出是3层24*24,池化层就是3层12*12。
这里写图片描述
这里写图片描述
pooling层的好处是,在保留了主要信息的前提下,减少了后续层所需的参数的数目。
除了max-pooling以外,L2-pooling(取区域内所有激励的平方和开根号),ave-pooling也很常用。

在最后加上全连接层:
这里写图片描述

二、卷积神经网络的实际操作:
①使用ReLU,加上L2正则化,效果更佳;
②扩大训练数据:一个扩大训练数据的简单方法是,在每张图中替换掉一个像素,上下左右移动一个像素,可以减轻过拟合;
③插入一个额外的全连接层:配合dropout使用效果更佳;
使用这个策略,需要适当下降迭代次数(因为dropout减轻了过拟合,加快了训练速度),需要适当增加全连接层神经元的数量(因为dropout再训练时会省去一些神经元)。
④训练一个网络集合:让它们对结果投票。
⑤只对全连接层使用dropout,而不在其它层使用:因为共享权重意味着卷积滤波器必须从整张图学习,不容易过拟合,也就不需要dropout。
⑥为什么CNN的训练得以顺利进行?
使用卷积层减少了参数,使学习问题更简单;
使用更强大的正则化技术减轻过拟合;
使用ReLU而不是sigmoid激励,加速训练;
使用GPU并接受长时间的训练。
⑦网络究竟可以有多深?
resnet已经做到1000+层了。
三、其他CNN变体:
①递归神经网络(RNN,recurrent neural network)
②LSTM(long short-term memory units)
③波茨曼机(Boltzmann machines,deep belief nets,DBN)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值