群的同构和映射

定义:设(G,·)与(G',+)为两个群,若存在一个从G到G’的一一映射f,满足对任意a,b∈G,都有

f(a·b)=f(a)+f(b)

则称GG‘同构,记为

G\cong G^{'}

称f为G到G’的同构

单射:设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的单射。

满射:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。

定理:同阶的任意两个循环群都是同构的

 

证明有限循环同构于模n的加法Zn: 假设G是一个有限循环,生成元为a,|G|=k。那么,对于任意一个元素g∈G,都可以表示为a^m,其中0≤m<k。因此,我们可以定义一个映射f:G→Zn,使得f(a^m)=m(mod n),其中n=k。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n(mod n)=f(a^m)+f(a^n)(mod n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个射。对于任意一个元素m∈Zn,我们可以找到一个元素a^m∈G,使得f(a^m)=m(mod n)。因此,这个映射是一个射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n(mod n),因此a^(m-n)是G的一个非零元素,但它的阶k不能整除n。这与n=k矛盾,因此这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此有限循环同构于模n的加法Zn。 证明无限循环同构于整数加法Z: 假设G是一个无限循环,生成元为a。那么,对于任意一个元素g∈G,都可以表示为a^m,其中m是整数。因此,我们可以定义一个映射f:G→Z,使得f(a^m)=m。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n=f(a^m)+f(a^n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个射。对于任意一个整数m∈Z,我们可以找到一个元素a^m∈G,使得f(a^m)=m。因此,这个映射是一个射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n,因此a^(m-n)是G的一个非零元素。由于G是无限循环,a^(m-n)的阶不可能有限,因此m-n=0,即m=n。因此,这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此无限循环同构于整数加法Z。 同态同构kerf的定义: 设f:G→H是一个的同态映射,其中G和H是两个。我们定义ker(f)为G的一个子,使得ker(f)={g∈G|f(g)=e},其中e是H的单位元。此时,我们称G和ker(f)同态同构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值