1.5 群的同构

§5 群的同构

定义1.5.1(同构)

G G G G ′ G' G 是两个群。若有一个从 G G G G ′ G' G 的双射 σ \sigma σ ,它对于所有的 x , y ∈ G x,y \in G x,yG
σ ( x y ) = σ ( x ) σ ( y ) \sigma(xy) = \sigma(x) \sigma(y) σ(xy)=σ(x)σ(y)
则称 G G G 同构于 G ′ G' G 。具有以上性质的双射称为 G G G G ′ G' G 的一个同构映射,或简称同构

注:

  1. 由定义显见:同构映射将单位元素映到单位元素,将逆元素映到逆元素。
  2. 群的同构作为群之间的一种关系,满足自反性、对称性和传递性。
  3. 在同构映射下,对应的元素在各自的运算下具有相同的代数性质。
  4. 在抽象地研究一个群时,无需对同构的群加以区别。

在历史上,群论最早研究的就是变换群,抽象群的概念也是从变换群的概念中抽象而来的。


定理1.5.1(Cayley定理)

任何一个群都同构于某一集合上的变换群。

证明

G G G 是一个群。对于每个 a ∈ G a \in G aG ,定义同一个集合 G G G 的变换 σ a \sigma_{a} σa 如下:
σ a ( x ) = a x , x ∈ G . \sigma_{a}(x) = ax, x \in G. σa(x)=ax,xG.
先证明 σ a \sigma_{a} σa G G G 的可逆变换。显然:
σ α − 1 σ α ( x ) = σ α − 1 ( a x ) = a − 1 a x = x , \sigma_{\alpha^{-1}} \sigma_{\alpha} (x) = \sigma_{\alpha^{-1}}(ax)= a^{-1}ax=x, σα1σα(x)=σα1(ax)=a1ax=x,

σ α σ α − 1 ( x ) = σ α ( a − 1 x ) = a a − 1 x = x . \sigma_{\alpha} \sigma_{\alpha^{-1}}(x) = \sigma_{\alpha}(a^{-1}x)= aa^{-1}x=x. σασα1(x)=σα(a1x)=aa1x=x.

也就是说, σ α σ α − 1 ( x ) \sigma_{\alpha} \sigma_{\alpha^{-1}}(x) σασα1(x) σ α − 1 σ α \sigma_{\alpha^{-1}} \sigma_{\alpha} σα1σα 都是单位变换。即:
σ α − 1 = σ α − 1 , \sigma^{-1}_{\alpha} = \sigma_{\alpha^{-1}}, σα1=σα1,
因此 σ a \sigma^{a} σa 是可逆变换。

这样,我们即得到集合 G G G 的一些可逆变换所组成的集合:

G l = { σ a ∣ a ∈ G } . G^{l} = \{\sigma_{a} | a \in G\}. Gl={σaaG}.
下证 G l G_{l} Gl 是变换群:

对于 σ a , σ b ∈ G l \sigma_{a},\sigma_{b} \in G_{l} σa,σbGl,有:

σ a σ b − 1 ( x ) = σ a σ b − 1 ( x ) = a b − 1 ( x ) = σ a b − 1 ( x ) , \sigma_{a} \sigma_{b}^{-1} (x) = \sigma_{a}\sigma_{b^{-1}}(x) = ab^{-1}(x)= \sigma_{ab^{-1}}(x), σaσb1(x)=σaσb1(x)=ab1(x)=σab1(x),

即:

σ a σ b − 1 = σ a b − 1 ∈ G l , \sigma_{a}\sigma_{b}^{-1} = \sigma_{ab^{-1}} \in G_{l}, σaσb1=σab1Gl,
定理1.4.1知: G l G_{l} Gl 是一变换群。下证同构:

因为
σ a ( e ) = a , \sigma_{a}(e) = a, σa(e)=a,
故当 a ≠ b a \neq b a=b 时, σ a ≠ σ b . \sigma_{a} \neq \sigma_{b}. σa=σb. 这说明:映射
a ↦ σ a a \mapsto \sigma_{a} aσa
G G G G l G_{l} Gl 的一个一一对应。由
σ a σ b = σ a b \sigma_{a}\sigma_{b} = \sigma_{ab} σaσb=σab
知上面的映射是一个同构。定理证毕。 ■ \blacksquare


定义1.5.2(平移和正则表示)

称变换 σ a \sigma_{a} σa 为元素 a a a G G G 上引起的 左平移,变换群 G l G_{l} Gl 称为群 G G G
左正则表示

若定义右平移
τ a ( x ) = x a − 1 \tau_{a}(x) = xa^{-1} τa(x)=xa1
G r = { τ a ∣ a ∈ G } G_{r}=\{\tau_{a} | a \in G \} Gr={τaaG} 称为 G G G 的右正则表示

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值