数据集偏移:类型、建模与高斯过程方法
在数据科学和机器学习领域,数据集偏移是一个常见且重要的问题。当训练集和测试集的数据特征存在差异时,模型的性能可能会受到显著影响。本文将详细介绍两种主要的数据集偏移类型——域偏移和源组件偏移,并探讨如何使用高斯过程方法来处理混合组件偏移问题。
1. 域偏移(Domain Shift)
在现实生活中,数字的含义可能会发生变化。例如,通货膨胀会降低货币的价值,光照变化会影响特定颜色的外观,测量单位也可能发生改变。这些变化都可能导致数据集偏移,我们将这种特定形式的数据集偏移称为域偏移。
域偏移的特点是测量系统或描述方法可能发生变化。为了理解这一点,我们可以假设协变量空间存在一些潜在的、不变的表示,用 $x_0$ 表示这个空间中的潜在变量。预测变量 $y$ 依赖于这个潜在的 $x_0$,但我们无法直接观察到 $x_0$,只能观察到 $x = f(x_0)$ 映射到可观测空间的结果,并且这个映射在训练和测试场景之间可能会发生变化。
以下是域偏移的简单图示:
graph LR
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
A(x0: 理想协变量):::process -->|变换 F| B(x: 观测协变量):::process
B --> C(P(y|x0): 目标分布):::process
建模域偏移涉及使用分布信息来估计表示之间的映射。一个很好的例子是对照片进行伽马校正。伽马校正是像素强度的一种特
订阅专栏 解锁全文
3068

被折叠的 条评论
为什么被折叠?



