算法分析与设计-大作业-圆排列问题

这篇博客探讨了如何将n个具有不同半径的圆放入矩形中,使得排列长度最小。通过解析问题、设计算法并进行分析,得出解决此问题的一种排列方式,并给出了对应的源码链接。
摘要由CSDN通过智能技术生成

1. 问题

给定n个圆的半径序列,将它们放到矩形框中,各圆与矩形底边相切,求具有最小排列长度的圆排列。

2. 解析

解为<i1,i2,…,in>为1,2,…,n的排列,解空间为排列树
部分解向量<i1,i2,…,ik>:表示前k个圆已排好。令B={i1,i2,…,ik},下一个圆选择ik+1.
约束条件:ik+1∈{1,2,…,n}-B
界:当前得到的最小圆排列长度。
代价函数符号说明
k:算法完成第k步,已经选择了第1-k个圆
rk:第k个圆的半径
dk:第k-1个圆到第k个圆的圆心水平距离,k>1
xk:第k个圆的圆心坐标,规定x1=0
lk:第1-k个圆的排列长度
Lk:放好1-k个圆以后,对应结点的代价函数值
Lk<=λk
在这里插入图片描述
在这里插入图片描述
计算过程
R={1,1,2,2,3,5}
取排列<1,2,3,4,5,6>
半径排列为1,1,2,2,3,5,结果见下表和下图

k rk dk xk lk Lk
1</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值