圆排列问题:给定n个圆的半径序列,将它们放到矩形框中,各圆与矩形底边相切,求具有最小排列长度的圆排列。
解析
两个圆之间的距离计算为sqrt((r1+r2)2-(r1-r2)2),推导出cx = 2sqrt(r1r2)。
计算当前圆排列的长度。新增一个变量记录当前最小圆排列长度,以及两个数组分别用于存储所有圆的半径和记录当前圆排列中各圆的圆心横坐标。
首先,计算当前圆排列的长度,和当前最小圆排列长度
调用计算当前圆排列长度的函数,更新当前最优值。
设计
回溯算法:
void Backtrack(int t)//回溯法
{
if (t == n + 1)
cal();
else {
for (int i = t; i <= n; i++) {
swap(r[t], r[i]);
double centerx = getcx(t);
if (r[1] + centerx + r[t] < minn) {
cx[t] = centerx;
Backtrack(t + 1);//到第t+1个圆
}
swap(r[t], r[i]);
}
}
}
分析
回溯算法的时间复杂度:O(n)
源码
https://github.com/pt0918/-/blob/master/Circle_sort.cpp