君と彼女の恋

题解前的BB
题目居然用漫作为题目背景,题目中那神说的话不符合语法,我也是醉了。

题目大意
给出 n,m(0n1018,1m100) ,有序列 a1,a2,a3...ak1,ak 满足这些数的和是n,且每个数模m后的结果互不相同,求这样的序列的个数,结果模905229641。

我们先来学习一些必备的东西。

放小球问题
现在我们来考虑一类特殊的问题:现在有a个球,要将其分成b组,每组至少有一个球,求方案数。
我们把 a 个球摊开后,题目就变成,要在a个格子之间放b-1个隔板(即在a1个空隙中放入 b1 隔板),使其分成b组,那么这样的组合数就为 Cb1a1

这个问题再升级一下就变成:现在有 a 个球,要将其分成b组,每组可以没有球,求方案数。
这样的解法其实是类似的。
考虑一个合法的方案,在每一组里都加入一个球,则每一组都有至少一个球,就得球的个数就变成了 a+b 个,题目就变成了:有 a+b 个球,要将其分成b组,每组至少有一个球,求方案数。则由上面一个问题的结论得出,这个问题的答案即为 Cb1a+b1

逆元
大家都知道倒数吧, 1x x 的倒数,那么在模意义下的倒数即为逆元,即如果满足x×x1(modp),那么 k 就是x的逆元,
由费马小定理:当 x p互质时, xp11(modp)
x×xp21(modp)
又因为 x×x1(modp)
那么 xxp2(modp)
x 的逆元为xp2

思路
一个很直观的想法是设 fx,y 表示这个序列的数的和是x,有y个模m后结果不同的数的方案数,显然转移伪代码为

t=0 -> m-1
    k=0 -> n
    if k%t==0
        x=n -> 0
            y=1 -> m
            f[x][y]=f[x][y]+f[x-k][y-1];

算出 f 数组后直接统计答案就好了。
然而,这样的时间复杂度是O(n2m2),显然很暴力,空间也很大。
这个方程是可以优化的!!!,设 fx,y 表示这个序列的数模m后的和为x,有y个模m后结果不同的数的方案数,这样的话,转移就变成了

t=0 -> m-1
    x=m*(m-1)/2 -> 0
        y=1 -> m
        f[x][y]=f[x][y]+f[x-t][y-1];

这样的时间复杂度就变成了 O(m4) ,时限一秒,可以过。但是,还没有完,我们还要求答案。

回归题目
前面我们已经预处理出了 f 数组,然后在于处理出jsi表示 i 的阶乘。设有序列b1,b2...bk满足 b 序列的数互不相同且都小于m,求答案的具体思路就是枚举b序列的和 t ,显然我们可以得出还需给任意一些b序列里的数加上共 ((nt)÷m) 个m,就能使 b 序列成为一个合法的a序列,设 x=(nt)÷m ,再枚举 b 序列的长度len,那么再由前面讨论出的特殊问题的结论(看到这里读者也许忘了,就是将a个球分成b组,每组可以没有球的方案数为 Cb1a+b1 ),答案就为 ft,lenjslenClen1x+len1 的和
看到这儿,是不是觉得这就是正解,小心脏就兴奋了?快要炸开了?太天真了。
由数据范围 (0n1018) x 的值可能很大,所以组合数不可以直接预处理,怎么办?因为len是从1到m枚举的,所以当 len=1 时,组合数的值为1,于是我们可以一个一个转移组合数的值。
当我们从 Clen1x+len1 转移到 Clenx+len 时,实际上, Clenx+len=Clen1x+len1×x+lenlen
因为有模,所以要用逆元,所以
Clenx+lenClen1x+len1×(x+len)×lenp2(modp)
于是就可以完美解决了,除预处理外时间复杂度 O(m3)

下面附一下代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<numeric>
#include<cstring>
#include<queue>
#include<functional>
#include<set>
#include<map>

#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)

typedef long long LL;
const int mod = 905229641;
const int M = 110;

using namespace std;

LL n;
LL m,f[M][M*M],ans,js[M];

void prepare(){
    f[0][0]=1;
    fo(i,0,m-1)
        fd(x,i,0)
            fo(y,0,m*(m-1)/2-i)
            if (f[x][y])f[x+1][y+i]=(f[x][y]+f[x+1][y+i])%mod;
    js[1]=1;
    fo(i,2,m)js[i]=js[i-1]*i%mod;
}

LL quickmi(LL x,int tim){
    LL ans=1;
    while (tim){
        if (tim%2==1)ans=(ans*x)%mod;
        x=(x*x)%mod;
        tim/=2;
    }
    return ans;
}

void getans(){
    ans=0;
    fo(i,0,m*(m-1)/2)
    if ((n-i)%m==0){
        LL x=((n-i)/m)%mod;
        LL tot=1;
        fo(j,1,m){
            ans=(ans+f[j][i]*js[j]%mod*tot%mod)%mod;
            tot=(tot*(x+j)%mod*quickmi(j,mod-2)%mod)%mod;
        }   
    }
}

int main(){
    scanf("%lld%d",&n,&m);
    prepare();
    getans();
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值