SaCNN人群密度估计测试

现实问题:随着社会的发展,城市人口的扩增,导致城市特定场所人口聚集度越来越大,不安全因素随之扩大。有效地估计特定场所的人口密度以及计算当前场景的人口数量对道道路安全和交通管理来说显得尤为重要。

解决来源(之一)WACV'18 paper - Crowd counting via scale-adaptive convolutional neural network (SaCNN)

 

文章原理就不过多介绍了,小伙伴可自行参考论文。最优之处博主认为采用了全卷积网络,可针对任意图像输入,不会造成图像失真

博主复现了原论文,实验对比如下:

测试结果:

 

 

------------------------------------------------更新2018.3.20--------------------------------------------

添加了windows-c++测试代码(基于caffe)

测试硬件:CPU-i7-4790-4核

测试结果:512x384分辨率图像,耗时1.7s左右,内存消耗1.4G左右

注意:因为是全卷积网络,所以内存消耗和输入图像分辨率大小成正比,耗时也和输入图像分辨率大小成正比

------------------------------------------------更新2019.4.20--------------------------------------------

基于MobileNet架构,优化人群密度估计

测试硬件:CPU-i7-9700K-6核

测试结果:

 ShangHaiTech_PartBCPU Speed (ms/frame)
EvaluateMAEMSE1024x768512x384
Zhang et al.26.441.3--
SaCNN16.225.82300590
MobileNet_V122.840.319055
MobileNet_V227.350.610035

 

任何问题请加唯一QQ2258205918(名称samylee)!

唯一VX:samylee_csdn

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值