Lebesgue

零测集

定义

  1. (零测集)对给定的集合 A A A,对于任意大于 0 的 ε \varepsilon ε,存在一个至多可数的开区间集 { I n : n ∈ N ∗ } \{I_n: n\in N^* \} {In:nN}组成 A A A 的一个开覆盖,并且 ∑ i = 0 n ∣ I i ∣ < ε \sum\limits_{i=0}^n |I_i| < \varepsilon i=0nIi<ε

定理

  1. 如果 A A A 是至多可数集,那么 A A A 一定是零测集。
  2. 任何长度不为 0 0 0 的区间都不是零测集。
  3. 至多可数集个零测集的并集是零测集。
  4. 零测集的子集也必然是零测集。

Lebesgue

定义

  1. D ( f ) D(f) D(f) f f f [ a , b ] [a,b] [a,b] 上的不连续点的全体,即 D ( f ) = { x ∈ [ a , b ] : f  在  x  点处不连续 } D(f)=\{x\in [a,b]: f \text{ 在 } x \text{ 点处不连续}\} D(f)={x[a,b]:f  x 点处不连续}
  2. B r ( x ) B_r(x) Br(x) 记为区间 ( x − r , x + r ) (x-r,x+r) (xr,x+r) ω f ( x , r ) \omega_f(x,r) ωf(x,r) 记为 f f f B r ( x ) B_r(x) Br(x) 上的振幅, ω f ( x ) = lim ⁡ r → 0 + ω f ( x , r ) \omega_f(x)=\lim\limits_{r\to0^+} \omega_{f}(x,r) ωf(x)=r0+limωf(x,r) 记为 f f f 在点 x x x 处的振幅。
  3. δ > 0 \delta > 0 δ>0 D δ = { x ∈ [ a , b ] : ω f ( x ) ≥ δ } D_\delta= \{x\in [a,b]: \omega_f(x) \geq \delta \} Dδ={x[a,b]:ωf(x)δ}

引理

  1. ω \omega ω 是有界函数 f f f [ a , b ] [a,b] [a,b] 上的振幅,那么 ω = sup ⁡ { ∣ f ( y 1 ) − f ( y 2 ) ∣ : y 1 , y 2 ∈ [ a , b ] } \omega=\sup\{|f(y_1)-f(y_2)|: y_1,y_2 \in [a,b]\} ω=sup{f(y1)f(y2):y1,y2[a,b]}

  2. 函数 f f f 在点 x ∈ I x\in I xI 处连续的充要条件是 ω f ( x ) = 0 \omega_f(x)=0 ωf(x)=0

  3. D ( f ) = ⋃ n = 1 ∞ D 1 / n D(f)=\bigcup\limits_{n=1}^{\infty}D_{1/n} D(f)=n=1D1/n

  4. f : [ a , b ] → R f:[a,b]\to \R f:[a,b]R。如果存在一列区间 ( α j , β j )   ( j = 1 , 2 , ⋯   ) (\alpha_j,\beta_j)\ (j=1,2,\cdots) (αj,βj) (j=1,2,),使得 D ( f ) ⊂ ⋃ j = 1 ∞ ( α j , β j ) D(f)\subset \bigcup\limits_{j=1}^{\infty}(\alpha_j,\beta_j) D(f)j=1(αj,βj),记 K = [ a , b ] \ ⋃ j = 1 ∞ ( α j , β j ) K=[a,b] \backslash \bigcup\limits_{j=1}^{\infty}(\alpha_j,\beta_j) K=[a,b]\j=1(αj,βj)。那么对任意的 ε > 0 \varepsilon >0 ε>0,一定存在 δ > 0 \delta > 0 δ>0,当 x ∈ K x\in K xK y ∈ [ a , b ] y\in [a,b] y[a,b] ∣ x − y ∣ < δ |x-y|<\delta xy<δ 时,有 ∣ f ( x ) − f ( y ) ∣ < ε |f(x)-f(y)| < \varepsilon f(x)f(y)<ε

定理

  1. (Lebesgue)设 f f f 在有限区间上有界,那么 f f f [ a , b ] [a,b] [a,b] 上黎曼可积的充要条件是: D ( f ) D(f) D(f) 是零测集。

推论

  1. f f f [ a , b ] [a,b] [a,b] 上有界,且只有至多可数个间断点,那么 f f f [ a , b ] [a,b] [a,b] 上黎曼可积。
  2. 如果 f f f [ a , b ] [a,b] [a,b] 上可积,那么 ∣ f ∣ |f| f [ a , b ] [a,b] [a,b] 上也可积。
  3. f , g f,g f,g [ a , b ] [a,b] [a,b] 上可积,那么 f g fg fg [ a , b ] [a,b] [a,b] 上也可积。因为 D ( f g ) ⊂ D ( f ) ⋃ D ( g ) D(fg)\subset D(f) \bigcup D(g) D(fg)D(f)D(g)
  4. 如果 f f f [ a , b ] [a,b] [a,b] 上可积, 1 f \frac 1f f1 [ a , b ] [a,b] [a,b] 上有定义且有界,那么 1 f \frac 1f f1 [ a , b ] [a,b] [a,b] 上也可积。这是因为 D ( f ) = D ( 1 f ) D(f)=D(\frac 1f) D(f)=D(f1)
  5. 如果 f f f [ a , b ] [a,b] [a,b] 上可积, [ c , d ] ⊂ [ a , b ] [c,d] \subset [a,b] [c,d][a,b],那么 f f f [ c , d ] [c,d] [c,d] 上也可积。
  6. 如果 c ∈ ( a , b ) c\in (a,b) c(a,b),且 f f f [ a , c ] [a,c] [a,c] [ c , d ] [c,d] [c,d] 上都可积,那么 f f f [ a , d ] [a,d] [a,d] 上也可积。
  7. f f f [ a , b ] [a,b] [a,b] 上可积,且 g g g 除有限个点以外都和 f f f 相等,那么 g g g [ a , b ] [a,b] [a,b] 上也可积,且 ∫ a b f ( x )   d x = ∫ a b g ( x )   d x \int_a^b f(x) \,\mathrm{d}x= \int_a^b g(x)\, \mathrm{d}x abf(x)dx=abg(x)dx
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值