\int_0^{+\infty} \frac{\sin x}{x}\mathop{}\!\mathrm{d}{x}

∫ 0 ∞ sin ⁡ x x  ⁣ d x = π 2 \int_0^{\infty}\frac{\sin{x}}{x}\mathop{}\!\mathrm{d}{x} = \frac{\pi}{2} 0xsinxdx=2π

计算需要用到 Riemann-Lebesgue 引理

首先由 Dirichlet 判别法 ∫ 0 ∞ sin ⁡ x x  ⁣ d x \int_0^{\infty}\frac{\sin{x}}{x}\mathop{}\!\mathrm{d}{x} 0xsinxdx 收敛。

∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t = ∫ 0 π ( 1 2 sin ⁡ t 2 − 1 t ) sin ⁡ ( n + 1 2 ) t  ⁣ d t + ∫ 0 π sin ⁡ ( n + 1 2 ) t t  ⁣ d t \int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} = \int_0^\pi \left(\frac 1{2\sin{\frac t2}} - \frac 1t\right)\sin{(n+\frac 12)t}\mathop{}\!\mathrm{d}{t} + \int_0^\pi \frac{\sin(n+\frac 12)t}{t}\mathop{}\!\mathrm{d}{t} 0π2sin21tsin(n+21)tdt=0π(2sin2t1t1)sin(n+21)tdt+0πtsin(n+21)tdt

其中 lim ⁡ t → 0 1 2 sin ⁡ t 2 − 1 t = 0 \lim\limits_{t\to 0}\frac 1{2\sin{\frac t2}} - \frac 1t = 0 t0lim2sin2t1t1=0,所以 ∫ 0 π ( 1 2 sin ⁡ t 2 − 1 t )  ⁣ d t \int_0^\pi \left(\frac 1{2\sin{\frac t2}} - \frac 1t\right)\mathop{}\!\mathrm{d}{t} 0π(2sin2t1t1)dt 是常义积分且可积。则由 Riemann-Lebesgue 引理 知上式右边的第一个积分在 n → + ∞ n\to+\infty n+ 时趋向于 0 0 0

所以:

lim ⁡ n → + ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t = lim ⁡ n → + ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) t t  ⁣ d t \lim_{n\to +\infty}\int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} = \lim_{n\to +\infty}\int_0^\pi \frac{\sin(n+\frac 12)t}{t}\mathop{}\!\mathrm{d}{t} n+lim0π2sin21tsin(n+21)tdt=n+lim0πtsin(n+21)tdt

右边的积分极限 令 ( n + 1 2 ) t = x (n+\frac 12)t = x (n+21)t=x 可得:

lim ⁡ n → + ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) t t  ⁣ d t = lim ⁡ n → + ∞ ∫ 0 ( n + 1 2 ) π sin ⁡ x x  ⁣ d x = ∫ 0 + ∞ sin ⁡ x x  ⁣ d x \lim_{n\to +\infty}\int_0^\pi \frac{\sin(n+\frac 12)t}{t}\mathop{}\!\mathrm{d}{t} = \lim_{n\to +\infty}\int_0^{(n+\frac 12)\pi} \frac{\sin x}{x}\mathop{}\!\mathrm{d}{x} = \int_0^{+\infty} \frac{\sin x}{x}\mathop{}\!\mathrm{d}{x} n+lim0πtsin(n+21)tdt=n+lim0(n+21)πxsinxdx=0+xsinxdx

从而:

lim ⁡ n → + ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t = ∫ 0 + ∞ sin ⁡ x x  ⁣ d x \lim_{n\to +\infty}\int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} = \int_0^{+\infty} \frac{\sin x}{x}\mathop{}\!\mathrm{d}{x} n+lim0π2sin21tsin(n+21)tdt=0+xsinxdx

又因为:

1 2 + ∑ k = 1 n cos ⁡ k t = sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t \frac 12 + \sum_{k=1}^n\cos{kt} = \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}} 21+k=1ncoskt=2sin21tsin(n+21)t

这里参考 三角函数累加和

两边在 [ 0 , π ] [0,\pi] [0,π] 上取积分:

π 2 + ∑ k = 1 n ∫ 0 π cos ⁡ k t  ⁣ d t = ∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t ⇒ π 2 = ∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t \begin{aligned} &\frac{\pi}2 + \sum_{k=1}^n\int_0^\pi \cos{kt}\mathop{}\!\mathrm{d}{t} = \int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} \\ &\Rightarrow \frac{\pi}2 = \int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} \end{aligned} 2π+k=1n0πcosktdt=0π2sin21tsin(n+21)tdt2π=0π2sin21tsin(n+21)tdt

所以:
lim ⁡ n → + ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) t 2 sin ⁡ 1 2 t  ⁣ d t = lim ⁡ n → + ∞ π 2 = π 2 = ∫ 0 + ∞ sin ⁡ x x  ⁣ d x \lim_{n\to +\infty}\int_0^\pi \frac{\sin(n+\frac 12)t}{2\sin{\frac 12t}}\mathop{}\!\mathrm{d}{t} = \lim_{n\to+\infty} \frac \pi2 = \frac \pi2 = \int_0^{+\infty} \frac{\sin x}{x}\mathop{}\!\mathrm{d}{x} n+lim0π2sin21tsin(n+21)tdt=n+lim2π=2π=0+xsinxdx

CSDN 的 KaTex 配置真的不方便。

文中链接是本地链接,不要点。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值