现阶段主要是阅读论文,然后在b站找找视频看,下面是对前面看过的论文梳理一下。
1.《Communication-Efficient Learning of Deep Networks from Decentralized Data》
联邦学习概念:
联邦学习是一种应对移动设备数据隐私和训练问题的创新学习技术。随着手机和平板等移动设备成为人们的主要计算工具,它们能获取大量隐私敏感或大规模数据,但将这些数据集中存储到数据中心进行训练存在风险。联邦学习通过让训练数据保留在移动设备上,仅上传本地计算的模型更新到中央服务器来解决此问题,从而降低隐私和安全风险,实现模型训练与原始数据访问的分离。
联邦优化:
联邦优化(Federated Optimization)的关键特性,包括数据的非独立同分布(Non-IID)、不平衡(Unbalanced)、大规模分布式(Massively distributed)以及有限的通信(Limited communication)等。
算法:
SGD:
SGD 即随机梯度下降(Stochastic Gradient Descent),是一种在机器学习中广泛应用的优化算法。
FederatedSGD:
FederatedSGD 是联邦学习中一种用于优化的算法。在联邦学习的场景下,数据分布在多个客户端设备上,与传统的集中式数据训练有所不同。
FederatedAveraging :
FederatedAveraging 算法是联邦学习中的一种重要算法,用于解决在分散数据上训练深度网络时的优化问题。
在联邦学习环境中,数据分布在众多移动设备(客户端)上,传统的优化算法如简单的随机梯度下降(SGD)应用于该场景时效率较低,需要大量的训练轮数才能得到较好的模型。FederatedAveraging 算法基于 SGD 进行改进,以适应联邦学习的特点。
2.后面再写