联邦学习周报1

现阶段主要是阅读论文,然后在b站找找视频看,下面是对前面看过的论文梳理一下。

1.《Communication-Efficient Learning of Deep Networks from Decentralized Data》

联邦学习概念:

联邦学习是一种应对移动设备数据隐私和训练问题的创新学习技术。随着手机和平板等移动设备成为人们的主要计算工具,它们能获取大量隐私敏感或大规模数据,但将这些数据集中存储到数据中心进行训练存在风险。联邦学习通过让训练数据保留在移动设备上,仅上传本地计算的模型更新到中央服务器来解决此问题,从而降低隐私和安全风险,实现模型训练与原始数据访问的分离。

联邦优化:

联邦优化(Federated Optimization)的关键特性,包括数据的非独立同分布(Non-IID)、不平衡(Unbalanced)、大规模分布式(Massively distributed)以及有限的通信(Limited communication)等。

算法:

SGD:

SGD 即随机梯度下降(Stochastic Gradient Descent),是一种在机器学习中广泛应用的优化算法。

FederatedSGD:

FederatedSGD 是联邦学习中一种用于优化的算法。在联邦学习的场景下,数据分布在多个客户端设备上,与传统的集中式数据训练有所不同。

 FederatedAveraging :

FederatedAveraging 算法是联邦学习中的一种重要算法,用于解决在分散数据上训练深度网络时的优化问题。

在联邦学习环境中,数据分布在众多移动设备(客户端)上,传统的优化算法如简单的随机梯度下降(SGD)应用于该场景时效率较低,需要大量的训练轮数才能得到较好的模型。FederatedAveraging 算法基于 SGD 进行改进,以适应联邦学习的特点。

2.后面再写

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值