概率程序权重与值函数的可微性及随机符号执行
1. 可微函数背景
在欧几里得空间 $R^n$ 到 $R^m$ 的函数中,基础实分析给出了函数在点 $x \in R^n$ 处可微性的标准概念。若函数 $f : R^n \to R^m$ 在开集 $U \subseteq R^n$ 的每一点都有各阶导数,则称 $f$ 在 $U$ 上是光滑的。微分几何理论将这一概念从欧几里得空间抽象到了光滑流形。
拓扑空间 $M$ 在点 $x \in M$ 处是局部欧几里得的,如果 $x$ 有一个邻域 $U$,使得存在一个从 $U$ 到 $R^n$ 的某个开子集的同胚 $\varphi$,这里的 $(U, \varphi : U \to R^n)$ 被称为一个图(维度为 $n$)。若 $M$ 在每一点都是局部欧几里得的,则称 $M$ 是局部欧几里得的。流形 $M$ 是一个豪斯多夫的、第二可数的、局部欧几里得空间。
两个图 $(U, \varphi : U \to R^n)$ 和 $(V, \psi : V \to R^m)$ 是兼容的,如果函数 $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ 是光滑的,且有光滑的逆。流形 $M$ 上的一个图集是一族两两兼容的图 ${(U_{\alpha}, \varphi_{\alpha})}$,它们覆盖了 $M$。配备了图集的流形称为光滑流形。
由于维度的拓扑不变性,覆盖同一个连通分量的图具有相同的维度。需要强调的是,不同的连通分量不一定具有相同的维度。集合 $S$ 是一个光滑流形,因为每个连通分量 $S_i$ 都与 $R^i$ 微分同胚。同样,SPCF 项的集合 $\
超级会员免费看
订阅专栏 解锁全文
21

被折叠的 条评论
为什么被折叠?



