python量化交易:筹码分布(4)_计算方法_依据成交明细及及换手率估算

筹码分布反映投资者持仓成本,通过考虑历史成交和换手率进行估算。活跃筹码比例揭示股价附近筹码的稳定性和集中度,低位筹码不动可能意味着主力被套,高位筹码不动则可能表明主力运作。通过对筹码分布的分析,可辅助判断买入时机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        “筹码分布”的准确的学术名称是“流通股票持仓成本分布”,它反映的是在不同价位上投资者的持仓数量

        筹码分布就是将历史上在每个价位成交的量叠加起来,并以此来判断当前市场上所有流通股的持仓成本。

  当然历史上成交中的一部分会在后面的交易日中被抛出,也就是说不能简单地将以前的成交累积到现在,而应该有一定的衰减。这个衰减的比例也就是每天的换手率

  比如说,1000万的盘子,前天均价为10元,成交量为200万,也就是20%换手率;昨天以均价11元又成交300万,也就是30%换手率;那前天的200万成交量怎么样了呢?成本分析假定,前天的200万在昨天也以11元被30%换手了,那么,前天以10元成交的成交量还剩了200*(1-30%)=140万;若今天以均价12元又成交了400万,同理可算,现在的筹码分布是:10元筹码为200*(1-30%)*(1-40%)=84万,11元的筹码为300*(1-40%)=180万,12元的筹码是400万。

        筹码分析理论的自然规律基础,是筹码流动的特点。筹码流动的特点,也是心理学的内容。简单说,就是单位时间内的卖出比例与持有时间和盈亏比例的关系。这是一个双变量函数。由于根本无法知道每日卖出的真实数量(因庄家对敲),或散户的操作情况,所以根本不可能给出这个函数的精确表达算式。亏损比例越大,持有时间越长,则卖出的比例越大;而亏损比例越小,持有时间越短,则卖出的比例越小。大概是一个负幂关系。获利方面,卖出比例与持有时间无关,获利0%-20%,卖出比例先上升后下降,过了20%,基本和获利幅度无关。换句话说,获利的筹

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值