【在Win10上安装使用RKNN工具+通过docker方式安装】

参考文献:https://www.cnblogs.com/kxqblog/p/16370068.html

20230615更新:之前内容针对RK3588时失败,本人重新通过docker方式解决。
1)windows系统利用docker搭建linux深度学习环境总结
2)官方参考PDF:rknn-toolkit2
/Rockchip_Quick_Start_RKNN_SDK_V1.5.0_CN.pdf

5) 官方github资料:rockchip-linux

-----------------------------以上是更新内容,以下是原内容-----------------------------------------------------

1. Python环境及其他依赖项:

  • Python3.6 (截止2023-06-08,rknn_toolkit只支持python 3.6)
  • windows 10
  • pip install tensorflow==1.14.0
  • torch1.10.1+cpu torchvision0.11.2+cpu torchaudio==0.10.1
  • mxnet==1.7.0
  • opencv-python-4.6.0.66
  • gluoncv
  • lmdb-1.4.1-cp36-cp36m-win_amd64
  • rknn_toolkit_lite-1.7.1-cp36-cp36m-win_amd64(1.7.3版本会出现兼容性问题)

2. 创建虚拟环境并安装依赖项

个人建议最好在Conda下新建一个虚拟环境进行安装,虚拟环境命名为 rknn,当然也可以是其他名字。

2.1 创建虚拟环境

conda create --name=rknn python=3.6.8

2.2 进入虚拟环境

conda activate rknn

2.3 安装深度学习框架

进入虚拟环境后,再执行以下命令安装深度学习框架,如Tensorflow,Pytorch,Keras等。

pip install tensorflow==1.14.0
pip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html
pip install mxnet==1.7.0
pip install opencv-python-4.6.0.66
pip install gluoncv

2.4 安装lmdb数据库

pypi下载 lmdb-1.4.1-cp36-cp36m-win_amd64.whl 并放在指定文件下(我的是: C:\Users\Admin\Downloads),执行安装命令:

pip install lmdb-1.4.1-cp36-cp36m-win_amd64.whl

在这里插入图片描述

2.5 安装 rknn-toolkit

去github下载 rknn-toolkit-v1.7.1 压缩文件,解压后pip 安装 rknn_toolkit_lite-1.7.1-cp36-cp36m-win_amd64.whl。可以复制出来放到指定文件夹,例如我复制到 C:\Users\Admin\Downloads
在这里插入图片描述

pip install rknn_toolkit_lite-1.7.1-cp36-cp36m-win_amd64.whl

联网安装,会自动安装其他需要的依赖项。
在这里插入图片描述

3. 测试是否安装成功

检测rknn是否安装成功,输入以下命令:

python
from rknn.api import RKNN

若无报错则安装RKNN成功
在这里插入图片描述

### 关于 RKNN-Toolkit2安装方法 RKNN-Toolkit 是 Rockchip 提供的一个工具包,用于支持其 AI 芯片上的神经网络模型转换和优化。以下是针对不同操作系统的 RKNN-Toolkit2 安装指南。 #### Windows 系统下的安装Windows 上安装 RKNN-Toolkit2 可通过以下方式完成: 1. **获取安装文件** 需要从官方提供的路径 `SDK/external/rknn-toolkit/packages/` 下载适合的 `.whl` 文件[^2]。例如,对于 Python 3.6 和 Win64 平台,可使用如下命令下载并安装: ```bash wget http://repo.rock-chips.com/python/rknn_toolkit2-<version>-cp36-cp36m-win_amd64.whl pip install rknn_toolkit2-<version>-cp36-cp36m-win_amd64.whl ``` 2. **验证安装** 使用以下命令确认 RKNN-Toolkit 是否已成功安装[^1]: ```bash python -c "import rknn.api; print(rknn.api.__version__)" ``` #### Linux 系统下的安装 Linux 环境下可以通过类似的流程完成安装: 1. **下载对应版本的 .whl 文件** 对于 Linux x86_64 架构,可以执行以下命令下载指定版本的轮子文件[^3]: ```bash wget http://repo.rock-chips.com/python/rknn_toolkit2-<version>-cp36-cp36m-linux_x86_64.whl ``` 2. **安装 wheel 文件** 利用 `pip` 工具进行安装: ```bash pip install rknn_toolkit2-<version>-cp36-cp36m-linux_x86_64.whl ``` 3. **检查安装状态** 同样可通过导入模块的方式检验是否正常工作: ```python import rknn.api as rknn_api print(rknn_api.__version__) ``` #### macOS 系统下的注意事项 目前官方文档并未明确提及对 macOS 原生的支持情况。如果需要在 macOS 上运行 RKNN-Toolkit2,则可能需借助虚拟机或者 Docker 来模拟兼容环境。具体步骤建议参考 Linux 方式的说明,并结合实际测试调整配置参数。 --- ### 示例代码片段 下面提供一段简单的 Python 测试脚本以展示如何加载 RKNN Toolkit API 并打印当前库版本号。 ```python try: from rknn.api import RKNN except ImportError as e: raise Exception('Failed to load RKNN module.') from e print(f'Loaded RKNN version: {RKNN.__version__}') ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值