卷积神经网络——CNN

卷积神经网络

卷积神经网络VS全连接神经网络
全连接神经网络:每两层之间的节点都有边相连接,包括输入层、激活层、全连接层
卷积神经网络:包括输入层、卷积层、池化层、全连接层、softmax层

卷积(Convolution)

卷积是卷积神经网络最核心的概念。卷积层中最重要的部分是过滤器(filter),又称为内核(kernal)。
在这里插入图片描述
如图所示,输入图像的像素为5×5,使用一个3×3的filter(卷积核),此时步长stride为1,filter从左上角开始向右滑动,每次滑动一格,输出值为整个像素块与卷积核的加权和。
若输入图像为M×M,卷积核为n×n,步长为d,则输出图像为[(M-n)/d+1]×[(M-n)/d+1]。

Padding

经过卷积操作后,一般会产生以下两个问题:
(1)feature map的尺寸会越来越小;
(2)边缘像素点的影响比较小,可能会丢失边缘信息。
为了解决该问题,引出padding这个概念,即全零填充,这样可以保持图片在卷积前后尺寸不变。
在这里插入图片描述
卷积网络的特点:
局部连接
共享权值
filter(kernel)/stride/padding

激励(Activation)

对于卷积神经网络,一般使用新的激活函数,即Relu函数,f(x)=max(0,x).。在这里插入图片描述
(1)为什么使用非线性激活函数?
因为如果使用线性的激活函数,那么输入x跟输出y之间的关系为线性的,便可以不需要网络结构,直接使用线性组合便可以。只有在输出层极小可能使用线性激活函数,在隐含层都使用非线性激活函数。
(2)为什么采用Relu函数,而不使用Sigmoid或tanh等函数呢?
ReLU由于非负区间的梯度为常数,因此不存在梯度消失问题(梯度爆炸),使得模型的收敛速度维持在一个稳定状态。

池化(Pooling)

池化又称为欠采样或下采样,对输入的特征图进行压缩,一是使特征图变小,简化网络计算的复杂度;二是进行特征压缩,提取主要特征。池化操作一般有两种Max Pooling和Average Pooling,多用Max Pooling(即最大池化)。
在这里插入图片描述
如上图所示,4x4的特征图,通过2x2的filter,步长为2,取出最大值,从而将特征图压缩为2x2的,降低了维度。

全连接层(Full connected)

全连接层把所有的特征连接在一起,然后送到分类器中。
softmax是CNN中比较常见的一种分类器,用来进行概率处理,归一化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值