《剑指Offer》java实现 数组中出现数字超过1半的数字



import java.util.ArrayList;

public class OccurenceMoreThanOneHalf {

 public static void main(String[] args) {
  int a[]={1,2,2,2,2,3,5,4,2,2};
  getoccurencymorethanonehalf(a); 
 }
 
 //判断数组中是否存在出现次数超过长度1半的元素
 public static boolean checkmorethanonehalf(int a[],int b){
  int count=0;
  for(int i=0;i<a.length;i++){
   if(a[i]==b){
    count++;
   }
  }
  if(count*2>a.length){
   return true;
  }else{
   return false;
  }
 }
 
 public static void getoccurencymorethanonehalf(int [] a){
  if(a.length==0){
   return;
  }else{
   ArrayList<Integer> a1=new ArrayList<Integer>();
   int index=1;
   int temp=a[0];
   a1.add(temp);
   for(int i=1;i<a.length;i++){
    if(a[i]!=temp){
     index--;
     if(index==0){
      temp=a[i];
      index=1;
      a1.add(temp);
     }
    }else{
     index++;
    }    
   }
   int result=a1.get(a1.size()-1);
   if(checkmorethanonehalf(a, result)){
    System.out.println(result);
   }else{
    System.out.println("输入不符合要求");
   }   
  }    
 }
 
 public static void exch(int a[],int i,int j){
  int temp=a[i];
  a[i]=a[j];
  a[j]=temp;
 }
 
 public static int partition(int a[],int start,int end){
  int basevalue=a[start];
  int basepos=start;
  for(int i=start+1;i<=end;i++){
   if(a[i]<basevalue){
    exch(a, i, basepos);
   }
  }
  exch(a, start, basepos);
  return basepos;
 }
 
 public static void getoccurencymorethanonehalf2(int a[]){
  int mid=a.length/2;
  int start=0;
  int end=a.length-1;
  int pos=partition(a, start, end);
  while(pos!=mid){
   if(pos< mid){
    start=pos+1;
    pos=partition(a, start, end);
   }else{
    end=pos-1;
    pos=partition(a, start, end);
   }
  }
  if(checkmorethanonehalf(a, a[pos])){
   System.out.println(a[pos]);
  }else{
   System.out.println("输入数组不符合要求");
  }
  
  //return a[pos];
 }

}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值