一、强化学习初印象
让机器像人一样学习:对已知环境进行规划、对未知环境进行探索/试错。
案例
Multi-Agent Hide and Seek,OpenAI 的 AI 多角色捉迷藏游戏。 地址:http://openai.com/blog/emergent-tool-use
参考资料:
- 《Reinforcement Learning: An Introduction》
- 伯克利 2018 Deep RL 课程:http://rail.eecs.berkeley.edu/deeprlcourse/
强化学习经典算法复现:DQN,DDPG,PPO,A3C
强化学习理论课:2015 David Silver 经典强化学习公开课,UC Berkeley CS285,斯坦福 CS234
动手实践:Sarsa、Q-learning、DQN、Policy Gradient、DDPG
经典论文
- DQN “Playing atari with deep reinforcement learning” https://arxiv.org/pdf/1312.5602.pdf
- A3C “Asynchronous methods for deep reinforcement learning” http://www.jmlr.org/proceedings/papers/v48/mniha16.pdf
- DDPG “Continuous control with deep reinforcement learning” https://arxiv.org/pdf/1509.02971
- PPO “Proximal policy optimization algorithms” https://arxiv.org/pdf/1707.06347
前沿研究方向:Model-based RL、Hierarchical RL、Multi Agent RL、Meta Learning
二、强化学习基本概念
1.强化学习是什么
- 强化学习(英语:
Reinforcement learning
,简称RL
)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。 - 核心思想:智能体
agent
在环境environment
中学习,根据环境的状态state
(或观测到的observation
),执行动作action
,并根据环境的反馈reward
(奖励)来指导更好的动作。 - 三要素:state状态(全局)/observation观察值(局部)、action动作、reward反馈/奖励
注意:从环境中获取的状态,有时候叫state
,有时候叫observation
,这两个其实一个代表全局状态,一个代表局部观测值,在多智能体环境里会有差别,但我们刚开始学习遇到的环境还没有那么复杂,可以先把这两个概念划上等号。
2.强化学习能做什么
- 游戏(马里奥、Atari、Alpha Go、星际争霸等)
- 机器人控制(机械臂、机器人、自动驾驶、四轴飞行器等)
- 用户交互(推荐、广告、NLP等)
- 交通(拥堵管理等)
- 资源调度(物流、带宽、功率等)
- 金融(投资组合、股票买卖等)
- 其他
3.强化学习与监督学习的区别
- 强化学习、监督学习、非监督学习是机器学习里的三个不同的领域,都跟深度学习有交集。
- 监督学习寻找输入到输出之间的映射,比如分类和回归问题。
- 非监督学习主要寻找数据之间的隐藏关系,比如聚类问题。
- 强化学习则需要在与环境的交互中学习和寻找最佳决策方案。
- 监督学习处理认知问题,强化学习处理决策问题。
4.强化学习的如何解决问题
- 强化学习通过不断的试错探索,吸取经验和教训,持续不断的优化策略,从环境中拿到更好的反馈。
- 强化学习有两种学习方案:基于价值(
value-based
)、基于策略(policy-based
)
5.强化学习的算法和环境
- 经典算法:
Q-learning
、Sarsa
、DQN
、Policy Gradient
、A3C
、DDPG
、PPO
- 环境分类:离散控制场景(输出动作可数)、连续控制场景(输出动作值不可数)
- 强化学习经典环境库
GYM
将环境交互接口规范化为:重置环境reset()
、交互step()
、渲染render()
- 强化学习框架库
PARL
将强化学习框架抽象为Model
、Algorithm
、Agent
三层,使得强化学习算法的实现和调试更方便和灵活。
6.强化学习的 2 种学习/优化方案
- 基于价值 Value-based (每一步 State 给奖励)—— 最终 Agent 获得每一步最优解(确定性策略)。算法有:Sarsa、Q-learning、DQN
- 基于策略 Policy-based (最终给出奖励)—— 最终 Agent 获得每一步的概率分布(随机性策略)。算法有:Policy gradient
7.算法库&框架库
三、GYM库(环境库)
RL环境相关的库:Gym编程实践
Gym 是个仿真平台,python 的开源库,RL 的测试平台
官网:https://gym.openai.com/
离散控制场景(动作为确定值):一般使用 atari 环境评估
连续控制场景(动作为浮动连续值):一般使用 mujoco 环境游戏评估
Gym 的核心接口是 enviroment
核心方法:
reset():重置环境的状态,回到初始环境,以便开始下一次训练。
step(action):推进一个时间步长,返回 4 个值:
observation (object):对环境的一次观察
reward (float):奖励
done (boolean):代表是否要重置环境(是否达成最终结果/游戏结束)
info (dict):用于调试的诊断信息
render():渲染,刷新环境新一帧的图形
四、PARL库(算法库)
PARL 是对 Agent 的框架抽象
适用范围:
- 入门:快速学习和对比不同常用算法
- 科研:快速复现论文结果,迁移算法到不同环境调研
- 工业:大规模分布式能力,单机到多机仅需2行代码,快速迭代上线
PARL 的实现基于 3 个类:
- Model(模版+用户定制):网络结构,可修改 carpole_model.py 文件
- Algorithm
- Agent(模版+用户定制):与环境交互方式,数据接口可修改 carpole_agent.py
五、常用算法简介
1.Sarsa简介
Sarsa
全称是state-action-reward-state'-action'
,目的是学习特定的 state
下,特定 action
的价值 Q
,最终建立和优化一个Q
表格,以 state
为行,action
为列,根据与环境交互得到的 reward
来更新 Q
表格,更新公式为:
Sarsa
在训练中为了更好的探索环境,采用ε-greedy
方式来训练,有一定概率随机选择动作输出。
2.Q-learning简介
Q-learning
也是采用Q
表格的方式存储Q
值(状态动作价值),决策部分与Sarsa
是一样的,采用ε-greedy
方式增加探索。- Q-learning跟Sarsa不一样的地方是更新Q表格的方式。
Sarsa
是on-policy
的更新方式,先做出动作再更新。Q-learning
是off-policy
的更新方式,更新learn()
时无需获取下一步实际做出的动作next_action
,并假设下一步动作是取最大Q
值的动作。
Q-learning
的更新公式为:
3.policy gradient简介
-
在强化学习中,有两大类方法,一种基于值(
Value-based
),一种基于策略(Policy-based
)Value-based
的算法的典型代表为Q-learning
和SARSA
,将Q
函数优化到最优,再根据Q
函数取最优策略。Policy-based
的算法的典型代表为Policy Gradient
,直接优化策略函数。
-
采用神经网络拟合策略函数,需计算策略梯度用于优化策略网络。
- 优化的目标是在策略
π(s,a)
的期望回报:所有的轨迹获得的回报R
与对应的轨迹发生概率p
的加权和,当N足够大时,可通过采样N个Episode求平均的方式近似表达。 - 优化目标对参数
θ
求导后得到策略梯度:
- 优化的目标是在策略
4.DDPG简介
-
DDPG
的提出动机其实是为了让DQN
可以扩展到连续的动作空间。 -
DDPG
借鉴了DQN
的两个技巧:经验回放 和 固定Q
网络。 -
DDPG
使用策略网络直接输出确定性动作。 -
DDPG
使用了Actor-Critic
的架构。
课程平台网址是https://aistudio.baidu.com/aistudio/education/group/info/1335
PARL的Github: https://github.com/PaddlePaddle/PARL
六、学习心得
之前没有学习过强化学习的课程,因此报名参与。强化学习目前也比较火,通过这次学习对强化学习有基本的认识和了解,可以使用开源的库来实现某种算法,从而解决问题。在强化学习中,比较重要的是Q表格,要理解公式,然后可以写代码,因此数学基础也很重要。
参考博客
https://www.pianshen.com/article/90581504270/