傻傻分不清、

想更靠近、

codeforces 687C

题意:给你n个硬币,一个数k,n个硬币每个硬币都有一个价值Ci,问从这些硬币中组合成k的集合的子集合中又能组成多少个数、

刚开始错误的解题思路:我开始以为只需要找到一种组合成k的方法的数然后用这个集合中的数再去找子集合,这个子集合当然使用01背包来做很简单、然而题意中是只要能组成k的集合都需要遍历一遍、贴上自己错误的代码

#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<set>
using namespace std;
const int qq = 505;
const int MAX = 1e8+10;
int c[qq];
int dp[qq];
int f[qq<<2];
vector<int>v[qq];
int main(){
	int n,k;cin >> n >> k;
	for(int i=0; i<qq; ++i)	
		for(int j=0; j<qq; ++j)	dp[i]=MAX;
	for(int i=0; i<qq; ++i)	dp[0]=0;
	for(int i=1; i<=n; ++i)	cin >> c[i];
	sort(c+1, c+1+n);
	for(int i=1; i<=n; ++i)
		for(int j=k; j>=c[i]; --j){
			if(dp[j]!=MAX)	continue; 
			if(dp[j-c[i]]!=MAX){
				dp[j]=j;
					dp[j]=j;
					for(int l=0; l<v[j-c[i]].size(); ++l)
						v[j].push_back(v[j-c[i]][l]);
					v[j].push_back(c[i]);
			}
		}
	cout << v[i].size() << endl;
	int sum=0;
	for(int i=0; i<v[k].size(); ++i)	sum+=v[k][i];
	for(int i=1; i<=sum; ++i)	f[i]=-MAX;
	f[0] = 0;
	for(int i=0; i<v[k].size(); ++i)
		for(int j=sum; j>=v[k][i]; --j)
			if(f[j-v[k][i]]!=-MAX)
				f[j] = max(dp[j], dp[j-v[k][i]]+v[k][i]);
	int count = 0;
	for(int i=0; i<=sum; ++i)	if(f[i]!=-MAX)	count++;
	printf("%d\n",count);
	for(int i=0; i<=sum; ++i)
		if(f[i]!=-MAX)	printf("%d ",i);
	puts("");
	return 0;
}

正解:dp[i][j] 代表数值为i时值为j能否被构成那么如果dp[i][j]能被构成那么 dp[i+x][j] dp[i+x][j+x] 都能被构成,这样状态转移方程就出来了

#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<set>
using namespace std;
const int qq = 505;
int dp[qq][qq];	//代表当数值为i的时候,j数字能否被构成 
int num[qq]; 
int main(){
	int n,k;cin >> n >> k;
	dp[0][0] = 1;
	for(int l=0; l<n; ++l){
		int x; cin >> x;
		for(int i=k; i>=x; --i)
			for(int j=0; j<=k-x; ++j)
				if(dp[i-x][j])	dp[i][j] = dp[i][j+x] = 1;
	}
	int tot=0;
	for(int i=0; i<=k; ++i)
		if(dp[k][i])	num[tot++] = i;
	cout << tot << endl;
	for(int i=0; i<tot; ++i)
		cout << num[i] << " ";
	cout << endl;
	return 0; 
}


阅读更多
版权声明:吸猫大法、 https://blog.csdn.net/sasuke__/article/details/52371269
个人分类: 各种dp题、
上一篇Codeforces Round #369 (Div. 2)
下一篇判断四点共面模版、
想对作者说点什么? 我来说一句

动态规划题解

2013年12月22日 1KB 下载

集训队作业

2013年01月14日 214KB 下载

没有更多推荐了,返回首页

关闭
关闭