Codeforces 687C

给定一堆硬币,从中挑选出总和为k的组合,求所有组合中能由组合里的硬币组成的金额。

背包dp,但背包不同一般的01背包,这个背包还要看组成的某个金额是否可行,所以需要在01背包的基础上增加一维。dp[i][j]表示当前选择了总和为i的物品,是否能凑出价值为j的组合

状态转移即遍历物品,对每个状态可以有:

1.选用这个物品,把他加入凑的组合内,dp[j][k]|=dp[j-v[i]][k-v[i]]

2.选用这个物品,但不把他加入凑的组合内,dp[j][k]|=dp[j-v[i]][k]

3.不选用这个物品,dp[j][k]|=dp[j][k]原封不动,所以只需要考虑前面两种

初始化状态dp[0][0]=true

#include<bits/stdc++.h>
using namespace std;

int read()
{
	int ret=0,base=1;
	char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') base=-1;
		ch=getchar();
	}
	while(isdigit(ch))
	{
		ret=(ret<<3)+(ret<<1)+ch-48;
		ch=getchar();
	}
	return ret*base;
}

int n,v[505],m;
int dp[505][505];

int main()
{
	n=read();m=read();
	for(int i=1;i<=n;i++) v[i]=read();
	dp[0][0]=true;
	for(int i=1;i<=n;i++)
	{
		for(int j=m;j>=v[i];j--)//01背包倒序枚举
		{
			for(int k=m;k>=0;k--)//01背包倒序枚举
			{
				if(k-v[i]>=0) dp[j][k]|=dp[j-v[i]][k-v[i]];
				dp[j][k]|=dp[j-v[i]][k];
			}
		}
	}
	set<int>ans;
	for(int i=0;i<=m;i++)
	{
		if(dp[m][i]) ans.insert(i);
	}
	printf("%d\n",ans.size());
	for(auto i:ans) printf("%d ",i);
 	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值