19、基于SVD的自适应鲁棒音频信号水印算法

基于SVD的自适应鲁棒音频信号水印算法

1. 水印嵌入与检测概述

在确定水印嵌入区域和每个区域的嵌入程度后,水印将在离散小波域(DWT)中以基于内容的自适应方式进行嵌入。选择DWT进行水印嵌入有诸多优势,比如与离散余弦变换(DCT)和离散傅里叶变换(DFT)相比,它所需的计算负载更低,并且具有可变的分解级别。

2. 水印嵌入
  • 确定嵌入区域 :首先确定高能量参考点,其索引存储在向量C中。第i个点的嵌入区域ROE(i)由以下公式确定:
    [ROE (i) = [C (i) - |A| /2 – p \times length (syncode) : C (i) + |A| /2 –1]]
    对该ROE段执行DWT,将同步码依次嵌入到各段的低频子带中。ROE段的长度取决于要嵌入的数据量,需足够大以容纳同步码和一些水印位。
  • 嵌入程度确定 :矩阵K的每一行对应一个高能量参考点,有一个非零元素,该元素的值表示嵌入程度。为简化数学计算,将其限制在有限的量化级别,非零元素的值表示要在该ROE中嵌入的水印位数。
  • 水印嵌入步骤(Algorithm 4)
    1. 使用上述公式确定嵌入区域ROE(i)。
    2. 按特定方式获取水印嵌入区域ROEWM:
      [ROEWM(i) = ROE(i) (length (syncode) +1: length (R(i))]
    3. 使用Haar小波对音频段进行三级DWT。
需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值