量子隧穿:双势阱与量子跃迁的深入探究
1. 双势阱模型概述
双势阱是量子隧穿的典型例子,在凝聚态物理、宇宙学等众多领域有广泛应用。考虑质量为 $m$ 的粒子在一维非谐势场中运动,其势函数为:
[V(x) = \frac{\alpha^2}{8}(x^2 - a^2)^2]
该势函数呈双势阱形状,在 $x = \pm a$ 处有两个极小值,在 $x = 0$ 处有一个极大值,势函数与纵轴交点为 $V(x) = \frac{\alpha^2a^4}{8}$。参数 $\alpha$ 体现了两个势阱之间的耦合程度,当 $\alpha$ 为无穷大时,势函数分离为两个独立的对称势阱,粒子会被困在其中一个势阱内,且两个势阱的能级是简并的;当 $\alpha$ 为有限值时,粒子存在在两个势阱间隧穿的可能性,这会打破能级简并,导致能级分裂。
1.1 能级分裂的计算
使用标准的 WKB 技术可计算能级分裂 $\Delta E = E_2 - E_1$,其中 $E_1$ 和 $E_2$ 分别对应基态波函数 $\varphi_0(x)$ 的对称和反对称组合的能量:
[\Delta E = \frac{4e}{\pi}\sqrt{\hbar m\omega^{3/2}}ae^{-\frac{1}{\hbar}S_0}]
其中,$\omega$ 是势阱极小值附近的简谐振动频率,满足 $V’‘(x = \pm a) = \alpha^2a^2 = m\omega^2$,$S_0 = \frac{2m\omega a^2}{3} = \frac{2m^2\omega^3}{3\alpha^2}$。等式右边的阻尼指数是隧穿的典型特征。
超级会员免费看
订阅专栏 解锁全文
1330

被折叠的 条评论
为什么被折叠?



