Ramsey理论
在任意给定的6个人当中必定存在有一组3个人,这3个人要么相互认识,要么相互之间不认识。如果对有穷顶点集 的完全图的边进行红-兰染色,则一定存在一些有穷集 使得所有与 中的顶点相关联的边都具有相同的颜色。上面的这两个结论都是Ramsey于1930年发表的定理中的特例。Ramsey定理的原始形式已经在许多方向上得到了延伸,并最终形成了Ramsey理论:一个揭示深层数学原理的理论,它从很大程度上推广了鸽笼原理,并告诉我们无论以什么方式将一个庞大的体系分解成一些小的部分,其中必定存在一个小的子体系。尽管Dirichlet的鸽笼原理已经保证了无论物体之间的关系如何,我们都能够得到许多类型相同的物体,然而我们在Ramsey理论中寻找的是相同类型的子结构:我们不仅想要得到无穷多的红边,而且我们还想得到与这个红的无穷集相关联的点双方组成的结构。或者说,在第一个例子里,我们不仅想要得到三对认识的关系,还要得到这三对关系能够 “组成一个三角形”,使得三对认识的关系是属于三个人的。
将Ramsey理论结论中的精华用于解决除了图论以外更广泛的数学结构问题的是van der Waerden定理,它比Ramsey定理出现得要早,并表明对给定的 和 ,如果 是一个足够大的整数,我们将 连续的自然数集合进行 种类型的划分,则一定有一种类型当中包含一个有 个元素的等差数列。
Ramsey理论是组合数学中一个庞大而又丰富的领域,其中采用了数学各个分支上的许多技术,并且它的结论不仅在图论与组合数学中相当重要,在集合论、逻辑学、分析、代数以及集合上都具有相当重要的意义。为了向大家介绍这些结果,我们引入一些超越图论范围以外的深层结论,其中包括:Erdős-Rado规范定理,它将Ramsey定理的原始表现形式拓展到无穷色;Shelah定理,拓展了Hales-Jewett定理(该定理拓展了van der Waerden定理);以及Galvin,Prikry和Hindman的关于Ramsey无穷序列的性质的一些定理。然而不论怎样,我们都只能向读者介绍皮毛而无法窥视现代Ramsey理论深层内容。
1 Ramsey定理的基础
我们考虑将一般简单图和超图的边进行划分。为了简单起见,我们称划分为着色,但是要谨记的是这里所讲的着色与平常所讲的边着色是不同的。这里相临的边可以着相同的颜色,实际上,我们的目的是为了显示有的子图它的所有边的颜色是相同的。比如在2-染色当中,我们通常选择红-兰两中颜色,一个子图被称为是红(兰)色的当且仅当它所有的边的颜色都是红(兰)色的。
正如我们将看到的,对于给定的自然数 ,存在一个整数 ,使得如果 ,则对 的边作任意红-兰边染色,必定存在一个红的 或者一个兰的 。这个说法应用到上面六个人的例子当中,则用 就可以完成了。为了将 的表达更一般化,对于任意整数 和 ,我们定义Ramsey数 为对应 的最小整数,使得对 进行任意红-兰边染色时能产生一个红 或者一个兰 。特别地,如果不存在这样的 能使得对 进行任意红-兰边染色时能产生一个红 或者一个兰 ,则令 。显然当 时有:
以及:
因为在对 进行红-兰染色的时候一定有要么出现一条红边,要么出现一条兰边的情况。下面的结果由Erdős和Szekeres得到,描述的是 对于任意的 和 都是有穷的,同时他们还给出了 的上界。尽管这个定理从性质上讲只是Ramsey定理的一个特例,但是这个上界比Ramsey所提供的上界要好得多。
【定理1】 对于所有的 和 都是有穷的。如果 且 ,则:
(1)
且有:
(2)
【证明】证明了(1)(2)的成立就自然证明了 的有穷性。
(i)证明(1)时先假定 和 是有穷的。令 ,假定对 的边进行红-兰染色。我们需要证明的是在这种染色下要么出现一个红 ,要么出现一个 。先令 是 当中的一个顶点。由于 ,要么至少存在 条红边与 相连,要么至少有 条兰边与 相连。由于这两者关系对称,我们先考虑第一种情况成立。考虑在 中与 通过红边相连的 个顶点所张成的子图 。如果 包含 则题设得证,反之由 的定义我们知道 包含一个红 ,这个红 与 一起构成红 。
(ii)首先不等式(2)在 或者 的时候成立(实际上我们可以得到相等关系,因为 )。现在假设 ,且对于任意序组 在满足 的时候(2)都成立。由(1)我们有:
□
一般我们区分对角Ramsey数(即 )和非对角Ramsey数(即 , )。如果我们说对角Ramsey数更能引起大家的研究兴趣请不要感到奇怪,因为这个领域的难度是相当大的。我们称一个图是平凡的是指这个图是空的或者是完全图,而对角Ramsey数 是指最小的整数 使得对 阶图进行红-兰染色后一定会出现一个单色的 阶子图。
我们可以由定理1得出:
(3)
尽管上面(3)式的证明是相当的简单,但是对(3)式所提出的上界在过去的50年里几乎没有改进。目前最好的改进由Thomason在1988年作出:当 足够大的时候有
(4)
尽管这个改进对于(3)而言是相当的小,但是它已经十分接近了,我们很难再改进它了。在后面的章节里我们会发现 是呈现指数增长的: 。现在广泛地相信存在一个常数 ,可能是 ,使得:
但是这个结论的证明是相当困难的。
这个结论是很容易扩展到用任意多种颜色进行染色的情况的:对给定的 和 如果 足够大的话,则对 用 种颜色进行任意染色之后,对于某些 , ,存在有染着第 种颜色的 。(通常使得上面成立的最小的整数 用 表示。)实际上,如果我们已经知道了染 种颜色的Ramsey数,那么在对 进行 种颜色染色的时候我们将头两种颜色用一种新颜色代替。如果 (由 决定)足够大的话,则要么存在 染了第 种颜色(对某些 , ),要么存在 ( )是染的新颜色。换而言之,即对原来的颜色来说, 是用头两种颜色进行染色的。对第一种情况我们容易得证,对第二种情况,当 或者 的时候我们可以在 中找到染着第 中颜色的 。这表明:
实际上,定理1还能够扩展到超图上,即对有穷集 ( 为任意 元序组)进行 染色的情况。这个定理已由Ramsey证明。下面我们将注意力转移到这上面来。
用 表示最小的整数 使得在 的条件下,对 进行红-兰染色能够产生一个红 集或者一个兰 集。当然,一个集 被称为是红(兰)的是指 当中的所有元素都是红(兰)的。注意到 。在定理1中,第二个结果不仅保证了 对所有参数都是有穷值(这个在一开始的时候表现得并不是很明显),同时也给出了 上界。这个的证明与定理1的证明几乎完全一样。注意到如果 则 ,并且如果 则 。
【定理2】 令 ,则 是有穷的并且有:
【证明】如果我们证明了对于所有的参数 都有 是有穷的,且 和 也是有穷的,则题设的两个结论就可以得证了。
令 是一个具有 个元素的集合。对 进行任意红-兰染色 ,任意元素 ,对 的 集定义一种红-兰染色 ,染色 使得 。由函数 的定义我们可以推断 有一个具有 个元素的红子集 (对于 而言)。
现在我们来看看 对 的约束。如果它有一个兰 子集,则得证,因为 ,所以 当中的兰 子集也必定是 当中的兰 子集。另一方面,如果 当中没有兰 子集则一定有红 子集。这个红 子集与 的并构成了 当中的红 子集,所以 对于所有 都是红的。
□
通过定理2和对定理1之后颜色分类的讨论,我们不难得出下面的推论。给定 和 ,则对足够大的 而言,利用 种颜色对 进行染色时,对某些 , ,存在有一个集合 , ,该集合当中的所有 集合具有颜色 。满足上面条件的最小的 表示为 ;那么 并且 。 的上界隐含在定理2中,但是结果并不理想。有人借助定理1的证明方法得到了更好的上界:
目前已知的非平凡Ramsey数极少,甚至在 的情况下也是这样。对于 这个不难得到,并且如果有人进一步做工作的话还可以得到 , , , ,以及 。然而想要证明 以及 其难度目前还无法估计。后来McKay和Radziszowski在1995年证明了 。那么上面这些就是目前我们知道的全部2-色Ramsey数了。对于其他情况,我们就只能知道它们的界了(参见表1-1)。这些界的证明颇具独创性,同时也需要花费大量的工作和计算时间。
1 k |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
3 |
6 |
9 |
14 |
18 |
23 |
28 |
36 |
40 43 |
46 51 |
51 60 |
59 69 |
66 78 |
73 89 |
4 |
|
18 |
25 |
35 41 |
49 61 |
53 84 |
69 115 |
80 149 |
96 191 |
106 238 |
118 291 |
129 349 |
134 417 |
5 |
|
|
43 49 |
58 87 |
80 143 |
95 216 |
114 316 |
442 |
|
|
|
|
|
6 |
|
|
|
102 165 |
298 |
495 |