全程参考官方文档:https://github.com/AlexeyAB/darknet
非常详细!
其他相关链接:
在window10下安装GPU版的darknet
yolov3 训练模型操作流程(包含所有资源下载)
Windows下在c++中调用darknet-yolo进行检测
下载coco数据集并训练自己的模型
(利用谷歌提供的虚拟盘)在colab上训练yolo模型(详细操作流程)
本文目录:
1.标注数据集,并转为yolo模式(txt格式):
标注的方式很多,这边只针对labelImg工具标注来做的,没有的可自行网上下载;
标注完成后,会生成xml文件,这里需要转换成yolo需要的txt格式:
txt的格式:
<object-class> <x_center> <y_center> <width> <height>
第一个:分类数
第二个:检测框 (中心横坐标x的值 / 图像宽度)
第三个:检测框 (中心标y的值 / 图像高度)
第四个:检测框 (检测框宽度/ 图像宽度)
第五个:检测框 (检测框高度/ 图像高度)
目的:使后四个数值控制在0~1之间
for example:
<x> = <absolute_x> / <image_width> or <height> = <absolute_height> / <image_height>
atention: <x_center> <y_center> - are center of rectangle
(are not top-left corner)
txt的格式类似于:
1 0.716797 0.395833 0.216406 0.147222
0 0.687109 0.379167 0.255469 0.158333
1 0.420312 0.395833 0.140625 0.166667
labelImg生成的xml转换为yolo指定格式的txt文件,转换脚本(python):
import glob
import xml.etree.ElementTree as ET
#类名
class_names=['bottle','paper_box','foam']
#选择输入路径
#path = 'D:/database/629_train/train_images/'
path = 'D:/database/629_train/val_images/'
#转换一个xml文件为txt
def single_xml_to_txt(xml_file):
tree = ET.parse(xml_file)
root = tree.getroot()
#保存txt文件路径
txt_file = xml_file.split('.')[0] + '.txt'
with open(txt_file, 'w') as txt_file:
for member in root.findall('object'):
#从xml获取图像的宽和高
picture_width = int(root.find('size')[0].text)
picture_height = int(root.find('size')[1].text)
class_name = member[0].text
#类名对应的index
class_num = class_names.index(class_name)
box_x_min = int(member[4][0].text) # 左上角横坐标
box_y_min = int(member[4][1].text) # 左上角纵坐标
box_x_max = int(member[4][2].text) # 右下角横坐标
box_y_max = int(member[4][3].text) # 右下角纵坐标
# 转成相对位置和宽高(所有值处于0~1之间)
x_center = (box_x_min + box_x_max) / (2 * picture_width)
y_center = (box_y_min + box_y_max) / (2 * picture_height)
width = (box_x_max - box_x_min) / picture_width
height = (box_y_max - box_y_min) / picture_height
print(class_num, x_center, y_center, width, height)
txt_file.write(str(class_num) + ' ' + str(x_center) + ' ' + str(y_center) + ' ' + str(width) + ' ' + str(
height) + '\n')
# 转换文件夹下的所有xml文件为txt
def dir_xml_to_txt(path):
for xml_file in glob.glob(path + '*.xml'):
print(xml_file)
single_xml_to_txt(xml_file)
dir_xml_to_txt(path)
(可选)此时已经不需要xml文件了,可以将所有xml文件移动到其他文件夹内:
#function:移除文件中的xml文件
import os
from os import listdir, getcwd
from os.path import join
import shutil
in_path = 'D:/database/629_train/val_images' #输入路径
out_xml_path = 'D:/database/629_train/val_xml'#将找到的xml文件放到该路径里
def get_files(inPath,out_xml_path):
for filepath,dirnames,filenames in os.walk(inPath): #在多级目录下找文件
for filename in filenames:
str1 = filename.split('.')[0]
str1_1 = filename.split('.')[1]
if str1_1 == "xml":
shutil.move(filepath + "\\" + filename, out_xml_path)
else:
continue
get_files(in_path,out_xml_path)
数据集文件夹结构:
最后,生成train.txt文件和test.txt,里面包含所有图像路径,
利用python脚本生成:
import glob
path = 'D:/database/629_train/'
def generate_train_and_val(image_path,txt_file):
with open(txt_file,'w') as tf:
for jpg_file in glob.glob(image_path + '*.jpg'):
tf.write(jpg_file + '\n')
generate_train_and_val(path + 'train_images/', path + 'train.txt')
#generate_train_and_val(path + 'val_image/'),path + 'val.txt'
2.制作cfg文件
复制yolov4-custom.cfg的副本,可重命名,并修改yolov4-custom.cfg的参数:
可在darknet主文件夹下搜索yolov4-custom.cfg
,新下载的darknet都会有
修改:
1.修改batch和subdivisions,官方推荐:
change line batch to batch=64
change line subdivisions to subdivisions=16
但是,显卡显存不足会报错:out of memory
可以修改为batch=16 subdivisions=16
2.width 和height 可以根据自己的需求做调整,但只能是yolo指定的尺寸(32的公倍数);
3.修改 max_batches
数值为classes*2000
并且满足,不少于训练图像的样本数;
举例:如果classes=3,那么max_batches不少于6000且不少于训练图像的样本数
官方文档:
change line max_batches to (classes*2000 but not less than number of training images, but not less than number of training images and not less than 6000), f.e. max_batches=6000 if you train for 3 classes
4.修改steps ,数值等于max_batches的百分之80,max_batches的百分之90
举例:如果classes=3,max_batches=6000,那么step=steps=4800,5400
官方文档:
change line steps to 80% and 90% of max_batches, f.e. steps=4800,5400
5.修改classses数,根据自己的数据集修改,共三处,在[yolo]-layers
6.修改每个[yolo]-layers之前的[convolutional]中的filters,共三处
将filters=255
的数值修改 filters=(classes + 5)x3
举例:
[convolutional]
filters=21
[region]
classes=2
官方文档:
change line classes=80 to your number of objects in each of 3 [yolo]-layers:
change [filters=255] to filters=(classes + 5)x3 in the 3 [convolutional] before each [yolo] layer, keep in mind that it only has to be the last [convolutional] before each of the [yolo] layers.
So if classes=1 then should be filters=18. If classes=2 then write filters=21.
3.下载yolov4预权重文件yolov4.conv.137
链接:https://pan.baidu.com/s/1l9Zh4jgyRO0f88AEcXbRaQ
提取码:1map
4.生成names文件
每一行写一个类名
(类名序号就会从0开始,从上往下排)
5.生成data文件
classes= 2
train = data/train.txt
valid = data/test.txt
names = data/obj.names
backup = backup/
第一行:多少分类
第二行:train.txt路径
第三行:vaild.txt路径
第四行:names文件的路径
第五行:backup文件夹的路径,用于保存训练过程中生成的weight文件
推荐用绝对路径,不要放在darknet/build/x64下,太多太乱
6.开始训练:
目前的文件夹结构:
训练需要data文件
,cfg文件
,和weight文件
;并且data文件中包含train.txt
,val.txt
,names文件
,backup文件夹
的路径
打开cmd控制台:
进入darknet.exe所在目录:(一般在······/darknet/build/darknet/x64目录下)
输入:
darknet.exe detector train data路径 cfg路径 yolov4.conv.137路径
然后就开始训练了
7.控制台darknet.exe调用自己训练的模型:
darknet.exe detector test data路径 cfg路径 weights路径 测试图像路径 -thresh 0.5