LOJ 6346 线段树:关于时间 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),另有一个存储三元组的列表 L L L.
m m m 个操作分两种:

  • add ⁡ ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):将 ( l , r , k ) (l,r,k) (l,r,k) 插入到 L L L 末尾.
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r a i \sum\limits_{i=l}^r a_i i=lrai.

每次操作后,对于 L L L 中每一项 ( l , r , k ) (l,r,k) (l,r,k),将 a l ∼ a r a_l\sim a_r alar 加上 k k k.

Limitations

1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1n,m105
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1lrn
1 ≤ a i ≤ 1 0 4 1\le a_i\le 10^4 1ai104
∣ k ∣ ≤ 1 0 4 |k|\le 10^4 k104
0.2 s , 256 MB \textcolor{red}{0.2\text{s}},256\text{MB} 0.2s,256MB

Solution

直接硬做是无法维护的,考虑每次修改后立刻计算贡献.
下设当前为第 i i i 次操作.

  • 如果是修改,则直到最后一次操作前, a l ∼ a r a_l\sim a_r alar 会被加 ( m − i ) (m-i) (mi) k k k.
  • 但如果是询问,那么没有执行的 ( m − i ) (m-i) (mi) 次操作的贡献要减掉.

接下来很显然了,我们维护序列 add , del \textit{add},\textit{del} add,del,初始时 add = a \textit{add}=a add=a del \textit{del} del 为全 0 0 0.

  • 对于修改,我们给 add l ∼ add r \textit{add}_l\sim\textit{add}_r addladdr 加上 k × ( m − i ) k\times(m-i) k×(mi),给 del l ∼ del r \textit{del}_l\sim\textit{del}_r delldelr 加上 k k k.
  • 对于查询,答案就是 ( ∑ j = l r a d d j ) − ( m − i ) × ( ∑ j = l r d e l j ) (\sum\limits_{j=l}^r add_j)-(m-i)\times(\sum\limits_{j=l}^r del_j) (j=lraddj)(mi)×(j=lrdelj).

add , del \textit{add},\textit{del} add,del 可用线段树维护,但是时限很紧,需要用 BIT 维护,实现见代码.

Code

1.6 KB , 0.16 s , 3.6 MB    (in   total,   C++20   with   O3 ) 1.6\text{KB},0.16\text{s},3.6\text{MB}\;\texttt{(in total, C++20 with \textcolor{red}{O3})} 1.6KB,0.16s,3.6MB(in total, C++20 with O3)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

inline int lowbit(int x) { return x & (-x); }

struct bit {
    int n;
    vector<i64> c1, c2;
    
    inline bit() {}
    inline bit(int _n): n(_n) {
        c1.resize(n);
        c2.resize(n);
    }
    
    inline void add(int x, i64 k) {
        for (int i = x + 1; i <= n; i += lowbit(i)) {
            c1[i - 1] += k;
            c2[i - 1] += k * x;
        }
    }
    
    inline i64 ask(int x) {
        i64 res = 0;
        for (int i = x + 1; i; i -= lowbit(i)) {
            res += c1[i - 1] * (x + 1) - c2[i - 1];
        }
        return res;
    }
    
    inline void update(int l, int r, i64 v) {
        add(l, v);
        add(r + 1, -v);
    }
    
    inline i64 sum(int l, int r) {
        return ask(r) - ask(l - 1);
    }
};

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n; scanf("%d", &n);
	bit f1(n), f2(n);
	for (int i = 0, x; i < n; i++) f1.update(i, i, (scanf("%d", &x), x));
	
	int m; scanf("%d", &m);
	for (int i = 0, op, l, r, x; i < m; i++) {
		scanf("%d %d %d", &op, &l, &r), l--, r--;
		if (op == 1) {
			scanf("%d", &x);
			f1.update(l, r, 1LL * x * (m - i - 1));
			f2.update(l, r, x);
		}
		else {
			printf("%lld\n", f1.sum(l, r) - f2.sum(l, r) * (m - i - 1));
		}
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值