基于深度学习的高精度苹果检测识别系统(Python+Pyside6)

摘要:基于深度学习的高精度苹果检测识别系统可用于日常生活中来检测与定位苹果目标,利用深度学习算法可实现图片、视频、摄像头等方式的苹果目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括苹果训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。另外本苹果检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度苹果识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

<think>嗯,用户想要构建一个基于深度学习的鸡蛋检测识别系统,使用PyTorch、Pyside6和YOLOv5模型。首先,我需要理解用户的需求。他们可能是一个开发者或者研究人员,想要实现一个能够自动检测鸡蛋的系统,可能用于农业、食品加工或者零售行业。用户可能已经了解了一些相关的技术,比如YOLOv5和PyTorch,但需要具体的步骤来整合这些技术,特别是如何结合图形界面Pyside6。 接下来,我需要回顾相关的引用内容。根据引用[1]和[3],已经存在类似的系统,比如刀具检测和鸡蛋检测,都是基于YOLOv5和Pyside6的。这些系统的大致流程包括数据准备、模型训练、界面开发以及系统集成。所以,用户的问题应该可以通过类似的步骤来解决,但需要具体到鸡蛋检测的场景。 首先,数据准备是关键。用户需要收集鸡蛋的图像,并进行标注。YOLOv5使用的是YOLO格式的标注,每张图片对应一个txt文件,包含类别和边界框信息。可能需要注意鸡蛋在不同环境下的多样性,比如光照、遮挡等因素,可能需要数据增强来提高模型的鲁棒性。 然后是模型训练。根据引用[3],YOLOv5的预训练模型作为起点,进行迁移学习。用户需要配置好数据集的结构,调整超参数,比如学习率、批次大小等。训练过程中可能会用到数据增强技术,如随机裁剪、旋转、色彩调整等,这些在YOLOv5中都有内置的支持。另外,学习率衰减和优化器选择也是关键步骤,需要确保模型收敛并防止过拟合。 接下来是PySide6界面开发。这部分需要设计一个用户友好的界面,能够上传图片或视频,调用训练好的模型进行检测,并展示结果。引用[1]和[3]提到,界面功能包括文件选择、实时检测、结果展示和导出。需要用到PySide6的组件,比如QMainWindow、QPushButton、QLabel等,同时需要处理多线程,避免界面卡顿。 系统集成方面,需要将训练好的YOLOv5模型嵌入到PySide6的应用中。这里可能需要使用PyTorch的推理功能,加载模型并对输入图像进行处理。预处理步骤如缩放、归一化,后处理如非极大值抑制(NMS)来过滤检测框。同时,需要处理OpenCV的图像格式转换,确保检测结果正确叠加在图像上。 用户可能遇到的难点包括环境配置,比如PyTorch、PySide6和YOLOv5的依赖安装,需要确保版本兼容。此外,模型训练可能需要一定的计算资源,比如GPU加速,用户可能需要指导如何设置训练参数以适应不同的硬件环境。另外,界面与模型推理的结合可能需要多线程处理,防止界面在检测过程中无响应。 可能还需要考虑模型的优化,比如引用[3]提到的后续将替换为YOLOv8等新模型,但目前用户指定的是YOLOv5,所以需要专注于该版本的实现。同时,用户可能需要扩展功能,比如导出检测结果、统计计数等,这些在界面设计中需要预留接口。 总结步骤的话,应该是:1. 准备数据集并标注;2. 配置YOLOv5环境,训练模型;3. 开发PySide6界面;4. 将模型集成到界面中,实现检测功能;5. 测试和优化整个系统。每个步骤都需要详细的说明,特别是代码示例和环境搭建的指导,确保用户能够按步骤操作。</think>### 基于YOLOv5+PyTorch+Pyside6的鸡蛋检测系统构建步骤 #### 一、系统架构设计 $$系统架构 = 数据采集 + 模型训练 + 界面开发 + 系统集成$$ 1. **数据层**:鸡蛋图像数据集(需包含不同角度、光照、遮挡情况) 2. **算法层**:YOLOv5目标检测模型(预训练+迁移学习) 3. **界面层**:基于Pyside6的可视化交互界面 4. **应用层**:检测结果输出与保存功能 #### 二、关键技术实现 1. **数据准备阶段**: ```python # YOLO格式标注示例(class_id x_center y_center width_height) 0 0.543 0.467 0.12 0.23 ``` - 建议数据增强配置(`data/egg.yaml`): ```yaml train: ../train/images val: ../val/images nc: 1 # 鸡蛋类别数量 names: ['egg'] ``` 2. **模型训练命令**: ```bash python train.py --img 640 --batch 16 --epochs 100 --data egg.yaml --weights yolov5s.pt ``` 3. **PySide6界面核心代码**: ```python class MainWindow(QMainWindow): def __init__(self): super().__init__() self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # 创建文件选择按钮 self.btn_open = QPushButton("选择图片", self) self.btn_open.clicked.connect(self.open_image) # 显示检测结果的标签 self.label_result = QLabel(self) self.label_result.setAlignment(Qt.AlignCenter) ``` #### 三、系统集成流程 1. **模型推理函数**: ```python def detect_egg(image_path): results = self.model(image_path) detections = results.pandas().xyxy[0] return detections[detections['confidence'] > 0.5] # 设置置信度阈值 ``` 2. **结果可视化处理**: ```python # 使用OpenCV绘制检测框 for _, row in detections.iterrows(): cv2.rectangle(img, (int(row['xmin']), int(row['ymin'])), (int(row['xmax']), int(row['ymax'])), (0,255,0), 2) ``` #### 四、环境配置要求 1. 基础环境安装: ```bash pip install torch torchvision torchaudio pip install pyside6 opencv-python pandas git clone https://github.com/ultralytics/yolov5 # YOLOv5官方仓库 ``` #### 五、性能优化建议 $$mAP = \frac{1}{n}\sum_{i=1}^{n} AP_i$$ - 通过调整输入分辨率(`--img`参数)平衡速度与精度 - 使用知识蒸馏技术压缩模型[^3] - 添加注意力机制模块提升小目标检测能力
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值