贪心算法解决最小生成树问题的一般步骤
一、解决思路
- 初始化:
- 选择一个起始顶点,将其加入到已访问集合(通常记为
visited)中。 - 初始化最小生成树集合(通常记为
mst)为空。 - 初始化边集合(通常记为
edges)存储所有边的信息,包括边的两个端点和边的权重。
- 选择一个起始顶点,将其加入到已访问集合(通常记为
- 贪心选择:
- 从已访问集合中的顶点出发,找出连接已访问集合和未访问集合的最小权重边。
- 将这条边加入到最小生成树集合
mst中。 - 将该边连接的未访问顶点加入到已访问集合中。
- 重复步骤:
- 重复步骤 2,直到所有顶点都被加入到已访问集合中,或者直到最小生成树集合中的边数等于顶点数减一(对于一个连通图,最小生成树的边数为
n-1,其中n为顶点数)。
- 重复步骤 2,直到所有顶点都被加入到已访问集合中,或者直到最小生成树集合中的边数等于顶点数减一(对于一个连通图,最小生成树的边数为
二、代码示例(Python)
python
代码解读
复制代码
import heapq def prim(graph, start): visited = set([start]) mst = [] edges = [(weight, start, to) for to, weight in graph[start].items()] heapq.heapify(edges) while edges: weight, frm, to = heapq.heappop(edges) if to not in visited: visited.add(to) mst.append((frm, to, weight)) for next_to, weight in graph[to].items(): if next_to not in visited: heapq.heappush(edges, (weight, to, next_to)) return mst # 示例图的表示,使用邻接表存储图的信息,{顶点: {邻接顶点: 边的权重}} graph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } print(prim(graph, 'A'))
三、代码解释
- 函数
prim实现了 Prim 算法,这是一种解决最小生成树问题的贪心算法。visited集合用于存储已经访问过的顶点。mst列表用于存储构成最小生成树的边,每个元素是一个三元组(frm, to, weight),表示从frm到to的边及其权重。edges是一个最小堆,存储从已访问顶点出发的边的信息,使用heapq模块实现最小堆操作。- 首先将起始顶点加入

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



