使用贪心算法解决最小生成树问题

贪心算法解决最小生成树问题的一般步骤

一、解决思路

  1. 初始化
    • 选择一个起始顶点,将其加入到已访问集合(通常记为 visited)中。
    • 初始化最小生成树集合(通常记为 mst)为空。
    • 初始化边集合(通常记为 edges)存储所有边的信息,包括边的两个端点和边的权重。
  2. 贪心选择
    • 从已访问集合中的顶点出发,找出连接已访问集合和未访问集合的最小权重边。
    • 将这条边加入到最小生成树集合 mst 中。
    • 将该边连接的未访问顶点加入到已访问集合中。
  3. 重复步骤
    • 重复步骤 2,直到所有顶点都被加入到已访问集合中,或者直到最小生成树集合中的边数等于顶点数减一(对于一个连通图,最小生成树的边数为 n-1,其中 n 为顶点数)。

二、代码示例(Python)

 

python

代码解读

复制代码

import heapq def prim(graph, start): visited = set([start]) mst = [] edges = [(weight, start, to) for to, weight in graph[start].items()] heapq.heapify(edges) while edges: weight, frm, to = heapq.heappop(edges) if to not in visited: visited.add(to) mst.append((frm, to, weight)) for next_to, weight in graph[to].items(): if next_to not in visited: heapq.heappush(edges, (weight, to, next_to)) return mst # 示例图的表示,使用邻接表存储图的信息,{顶点: {邻接顶点: 边的权重}} graph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } print(prim(graph, 'A'))

三、代码解释

  • 函数 prim 实现了 Prim 算法,这是一种解决最小生成树问题的贪心算法。
    • visited 集合用于存储已经访问过的顶点。
    • mst 列表用于存储构成最小生成树的边,每个元素是一个三元组 (frm, to, weight),表示从 frm 到 to 的边及其权重。
    • edges 是一个最小堆,存储从已访问顶点出发的边的信息,使用 heapq 模块实现最小堆操作。
    • 首先将起始顶点加入 
最小生成树问题有多种解决方法,其中一种是使用贪心算法。在C++中,使用贪心算法解决最小生成树问题的步骤如下: 1. 确定图的边集合,并根据边权值从小到大排序。 2. 初始化一个空的边集合,这个边集合最终就是最小生成树。 3. 从排序后的边集合中依次选取边加入到边集合中,如果这条边所连接的两个点不在同一个连通块中,则将这条边加入到边集合中,同时将这两个点合并到同一个连通块中。 4. 重复步骤3,直到所有的点都在同一个连通块中为止。 下面是使用 Kruskal 算法实现的代码: ```c++ #include <bits/stdc++.h> using namespace std; const int MAXN = 1005; struct Edge { int u, v, w; bool operator<(const Edge &e) const { return w < e.w; } }; int fa[MAXN]; int find(int x) { if (fa[x] == x) return x; return fa[x] = find(fa[x]); } void merge(int x, int y) { int fx = find(x), fy = find(y); if (fx != fy) fa[fx] = fy; } int main() { int n, m; cin >> n >> m; vector<Edge> edges; for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; edges.push_back({u, v, w}); } sort(edges.begin(), edges.end()); for (int i = 1; i <= n; ++i) fa[i] = i; vector<Edge> ans; for (Edge e : edges) { if (find(e.u) != find(e.v)) { merge(e.u, e.v); ans.push_back(e); } } int sum = 0; for (Edge e : ans) sum += e.w; cout << sum << endl; return 0; } ``` 其中,`Edge` 表示一条边的结构体,`vector<Edge> edges` 存储所有的边,`vector<Edge> ans` 存储最小生成树中的边,`fa` 数组表示并查集的父亲数组。在代码中,我们首先将所有的边按照权值排序,然后使用并查集维护连通性,并将边加入到最小生成树中,最后计算最小生成树的权值和输出即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值