29-贝叶斯线性回归

1.线性回归

1.1 背景

这里我们先回顾下我们之前的线性回归相关理论,假设我们有一组数据集合如下:
D = { ( x i , x j ) } i = 1 N , 其 中 x i ∈ R p , y i ∈ R (1) D=\{(x_i,x_j)\}_{i=1}^{N},其中 x_i \in\mathbb{R}^p,y_i\in \mathbb{R}\tag{1} D={(xi,xj)}i=1N,xiRp,yiR(1)
其中 样本X 为 N X P 维矩阵,具体表示如下:
X = ( x 1 , x 2 , . . . , x N ) T = ( x 1 T x 2 T ⋮ x N T ) = ( x 11 x 12 . . . x 1 p x 21 x 22 . . . x 2 p ⋮ ⋮ ⋮ ⋮ x N 1 x N 2 . . . x N p ) N × P (2) X=(x_1,x_2,...,x_N)^T= \begin{pmatrix} x_1^T\\x_2^T\\\vdots\\x_N^T \end{pmatrix}=\begin{pmatrix} x_{11}&x_{12}&...&x_{1p}\\x_{21}&x_{22}&...&x_{2p}\\\vdots&\vdots&\vdots&\vdots\\x_{N1}&x_{N2}&...&x_{Np}\end{pmatrix}_{N \times P} \tag{2} X=(x1,x2,...,xN)T=x1Tx2TxNT=x11x21xN1x12x22xN2.........x1px2pxNpN×P(2)
Y = ( y 1 , y 2 , . . . , y N ) T = ( y 1 T y 2 T ⋮ y N T ) N × 1 (3) Y=(y_1,y_2,...,y_N)^T= \begin{pmatrix} y_1^T\\y_2^T\\\vdots\\y_N^T \end{pmatrix}_{N\times 1}\tag{3} Y=(y1,y2,...,yN)T=y1Ty2TyNTN×1(3)
线性回归就是需要找到一个函数去拟合所有的样本点,常见的拟合方式有最小二乘法,为了避免过拟合,我们一般通过加正则项来约束方程,使得最后的结果不至于太差。
我们的拟合函数如下:
f ( x ) = w T x = x T w (4) f(x)=w^Tx=x^Tw \tag{4} f(x)=wTx=xTw(4)
对于预测值 y 来说,满足如下:
y = f ( x ) + ε , ε ∼ ( 0 , σ 2 ) (5) y = f(x)+\varepsilon,\varepsilon \sim(0,\sigma^2)\tag{5} y=f(x)+ε,ε(0,σ2)(5)

  • 注:其中 x , y , ε x,y,\varepsilon x,y,ε 都是随机变量

1.2 思维导图

在这里插入图片描述

为了用一个函数去拟合所有的样本,我们一般都是用 最小二乘估计方法 (LSE), 从几何意义出发,得到 估计值 W ,从概率视角来看,最小二乘估计就相当于极大似然估计,且噪声为高斯分布。为了解决最小二乘估计的过拟合问题,我们引出了具有正则化的最小二乘估计(Regularized-LSE),根据正则化的项不同可以分为 Lasso回归 和 Ridge回归 两种方式;从概率角度来看,具有正则化的最小二乘估计(Regularized-LSE)就相当于 概率里面的最大后验估计(MAP),且噪声为高斯分布;
MAP & noise is guassian 公式如下:
P ( w ∣ d a t a ) ⏟ p o s t e r i o r ∝ P ( d a t a ∣ w ) ⏟ l i k e l i h o o d ⋅ P ( w ) ⏟ P r i o r (6) \underbrace{P(w|data)}_{posterior} \propto \underbrace{P(data|w)}_{likelihood}·\underbrace{P(w)}_{Prior}\tag{6} posterior P(wdata)likelihood P(dataw)Prior P(w)(6)

  • MAP for w:
    w M A P = arg max ⁡ w P ( w ∣ d a t a ) = arg max ⁡ w P ( d a t a ∣ w ) ⋅ P ( w ) (7) w_{MAP}=\argmax\limits_{w}P(w|data)=\argmax\limits_{w}P(data|w)·P(w)\tag{7} wMAP=wargmaxP(wdata)=wargmaxP(dataw)P(w)(7)
  • 如果先验为高斯分布,那么对应的就是 Ridge 回归
  • 如果先验为 Laplace 分布,那么对应的就是 Lasso 回归

总体来说,对于最小二乘估计(LSE) 和 正则化的最小二乘估计 (Regularized-LSE) 均属于点估计,是属于频率派的方法,其中 w 是未知的常数,并且最终转换成一个优化问题,具体公式如下:
w M L E = arg max ⁡ w P ( d a t a ∣ w ) (8) w_{MLE}=\argmax\limits_{w}P(data|w)\tag{8} wMLE=wargmaxP(dataw)(8)
w M A P = arg max ⁡ w P ( d a t a ∣ w ) ⋅ P ( w ) (9) w_{MAP}=\argmax\limits_{w}P(data|w)·P(w)\tag{9} wMAP=wargmaxP(dataw)P(w)(9)

1.3 贝叶斯估计与最小二乘法的区别

以上两种方法为点估计,现在我们引入贝叶斯方法(Bayesian-Method),而贝叶斯方法就不是点估计,而是属于贝叶斯派,那么此时的 w 就是 随机变量,此时我们就需要估计出分布 P(w|data)。

2. 贝叶斯方法

2.1 inference 和 prediction

贝叶斯方法(Bayesian-Method)包含两个部分,第一部分为 inference 和 prediction;其中 inference 指的是 求关于数据的后验Posterior: P ( w ∣ d a t a ) P(w|data) P(wdata) ,此时 w 是一个分布,而不是一个常量; 其中 Prediction 指的是 在给定 x ∗ x^* x 时,我们求解出对应的 y ∗ y^* y .

2.2 inference

我们知道了 inference 指的是求解后验Posterior: P ( w ∣ d a t a ) P(w|data) P(wdata),公式如下:
P ( w ∣ d a t a ) = P ( w ∣ X , Y ) = P ( W , Y ∣ X ) P ( Y ∣ X ) = P ( Y ∣ X , W ) ⋅ P ( W ) ∫ w P ( Y ∣ X , W ) ⋅ P ( W ) d w (10) P(w|data)=P(w|X,Y)=\frac{P(W,Y|X)}{P(Y|X)}=\frac{P(Y|X,W)·P(W)}{\int_w P(Y|X,W)·P(W)dw}\tag{10} P(wdata)=P(wX,Y)=P(YX)P(W,YX)=wP(YX,W)P(W)dwP(YX,W)P(W)(10)
我们可以看作 ∫ w P ( Y ∣ X , W ) ⋅ P ( W ) d w \int_w P(Y|X,W)·P(W)dw wP(YX,W)P(W)dw 为积分常量,所以可得如下:
P ( w ∣ d a t a ) ∝ P ( Y ∣ X , W ) ⋅ P ( W ) (11) P(w|data)\propto P(Y|X,W)·P(W)\tag{11} P(wdata)P(YX,W)P(W)(11)
为了解决上述问题,我们需要求解出 P ( Y ∣ W , X ) P(Y|W,X) P(YW,X) 模型的相关参数,公式如下:
P ( Y ∣ W , X ) = ∏ i = 1 N P ( y i ∣ w i , x i ) = ∏ i = 1 N N ( y i ∣ w T x i , σ 2 ) (12) P(Y|W,X)=\prod_{i=1}^NP(y_i|w_i,x_i)=\prod_{i=1}^N N(y_i|w^Tx_i,\sigma^2)\tag{12} P(YW,X)=i=1NP(yiwi,xi)=i=1NN(yiwTxi,σ2)(12)
我们知道 y = w T x + ε ; ε ∼ ( 0 , σ 2 ) y=w^Tx+\varepsilon;\varepsilon\sim(0,\sigma^2) y=wTx+ε;ε(0,σ2),所以可得P(Y|W,X)分布:
P ( y ∣ w , x ) ∼ N ( y i ∣ w T x i , σ 2 ) (13) P(y|w,x)\sim N(y_i|w^Tx_i,\sigma^2)\tag{13} P(yw,x)N(yiwTxi,σ2)(13)
我们定义先验 P(W)服从高斯分布如下: P ( W ) ∼ N ( 0 , Σ p ) P(W)\sim N(0,\Sigma_p) P(W)N(0,Σp) ;这是我们任意给的,合理即可;
由高斯共轭性可得,当两个分布为高斯分布时,那么其组合为高斯分布:
P ( W ∣ d a t a ) ⏟ G u a s s i a n ∝ P ( Y ∣ X , W ) ⏟ G u a s s i a n ⋅ P ( W ) ⏟ G u a s s i a n (14) \underbrace{P(W|data)}_{Guassian}\propto \underbrace{P(Y|X,W)}_{Guassian}·\underbrace{P(W)}_{Guassian}\tag{14} Guassian P(Wdata)Guassian P(YX,W)Guassian P(W)(14)
那么可以得如下:
P ( W ∣ d a t a ) ∝ P ( Y ∣ X , W ) ⋅ P ( W ) = ∏ i = 1 N N ( y i ∣ w T x i , σ 2 ) ⋅ N ( 0 , Σ p ) (15) P(W|data)\propto P(Y|X,W)·P(W)=\prod_{i=1}^N N(y_i|w^Tx_i,\sigma^2)·N(0,\Sigma_p)\tag{15} P(Wdata)P(YX,W)P(W)=i=1NN(yiwTxi,σ2)N(0,Σp)(15)
由高斯分布的共轭性可得,P(W|data)一定为高斯分布,假设期望为 μ w \mu_w μw,方差为 Σ w \Sigma_w Σw
P ( W ∣ d a t a ) = N ( μ w , Σ w ) ∝ ∏ i = 1 N N ( y i ∣ w T x i , σ 2 ) ⋅ N ( 0 , Σ p ) (16) P(W|data)=N(\mu_w,\Sigma_w)\propto\prod_{i=1}^N N(y_i|w^Tx_i,\sigma^2)·N(0,\Sigma_p)\tag{16} P(Wdata)=N(μw,Σw)i=1NN(yiwTxi,σ2)N(0,Σp)(16)

2.2.1 求解 P(W|data)的参数

  • 已知 P ( Y ∣ X , W ) = ∏ i = 1 N N ( y i ∣ w T x i , σ 2 ) P(Y|X,W)=\prod_{i=1}^N N(y_i|w^Tx_i,\sigma^2) P(YX,W)=i=1NN(yiwTxi,σ2),可得概率密度如下:
    P ( Y ∣ X , W ) = ∏ i = 1 N 1 ( 2 π ) 1 2 σ e x p { − 1 2 σ 2 ( y i − w T x i ) 2 } (17) P(Y|X,W)=\prod_{i=1}^N \frac{1}{(2\pi)^{\frac{1}{2}}\sigma}exp\{-\frac{1}{2\sigma^2}(y_i-w^Tx_i)^2\}\tag{17} P(YX,W)=i=1N(2π)21σ1exp{2σ21(yiwTxi)2}(17)
    P ( Y ∣ X , W ) = 1 ( 2 π ) N 2 σ N e x p { − 1 2 σ 2 ∑ i = 1 N ( y i − w T x i ) 2 } (18) P(Y|X,W)= \frac{1}{(2\pi)^{\frac{N}{2}}\sigma^N}exp\{-\frac{1}{2\sigma^2}\sum_{i=1}^N(y_i-w^Tx_i)^2\}\tag{18} P(YX,W)=(2π)2NσN1exp{2σ21i=1N(yiwTxi)2}(18)
  • 转换成矩阵形式如下:
    P ( Y ∣ X , W ) = 1 ( 2 π ) N 2 σ N e x p { − 1 2 ( Y − X W ) T σ − 2 I ( Y − X W ) } (19) P(Y|X,W)= \frac{1}{(2\pi)^{\frac{N}{2}}\sigma^N}exp\{-\frac{1}{2}(Y-XW)^T\sigma^{-2}I(Y-XW)\}\tag{19} P(YX,W)=(2π)2NσN1exp{21(YXW)Tσ2I(YXW)}(19)
  • 所以可得:
    P ( Y ∣ X , W ) ∼ N ( X W , σ − 2 I ) P(Y|X,W)\sim N(XW,\sigma^{-2}I) P(YX,W)N(XW,σ2I)
  • 故可得 P ( W ∣ X , Y ) P(W|X,Y) P(WX,Y)如下:
    P ( W ∣ X , Y ) ∝ N ( X W , σ − 2 I ) ⋅ N ( 0 , Σ p ) (20) P(W|X,Y)\propto N(XW,\sigma^{-2}I)·N(0,\Sigma_p)\tag{20} P(WX,Y)N(XW,σ2I)N(0,Σp)(20)
    由高斯概率密度函数可得,我们其实只需要关注指数部分的参数即可,得如下:
  • N ( X W , σ − 2 I ) N(XW,\sigma^{-2}I) N(XW,σ2I)的指数部分
    e x p { − 1 2 ( Y − X W ) T σ − 2 I ( Y − X W ) } (21) exp\{-\frac{1}{2}(Y-XW)^T\sigma^{-2}I(Y-XW)\}\tag{21} exp{21(YXW)Tσ2I(YXW)}(21)
  • N ( 0 , Σ p ) N(0,\Sigma_p) N(0,Σp)的指数部分
    e x p { − 1 2 W T Σ p − 1 W } (22) exp\{-\frac{1}{2}W^T\Sigma_p^{-1}W\}\tag{22} exp{21WTΣp1W}(22)
  • P ( W ∣ X , Y ) P(W|X,Y) P(WX,Y)的指数部分:
    e x p { − 1 2 σ 2 ( Y T − W T X T ) ( Y − X W ) − 1 2 W T Σ p − 1 W } exp\{-\frac{1}{2\sigma^2}(Y^T-W^TX^T)(Y-XW)-\frac{1}{2}W^T\Sigma_p^{-1}W\} exp{2σ21(YTWTXT)(YXW)21WTΣp1W}
    e x p { − 1 2 σ 2 ( Y T Y − Y T X W − W T X T Y + W T X T X W ) − 1 2 W T Σ p − 1 W } exp\{-\frac{1}{2\sigma^2}(Y^TY-Y^TXW-W^TX^TY+W^TX^TXW)-\frac{1}{2}W^T\Sigma_p^{-1}W\} exp{2σ21(YTYYTXWWTXTY+WTXTXW)21WTΣp1W}
  • 因为 Y T X W = W T X T Y Y^TXW=W^TX^TY YTXW=WTXTY
    e x p { − 1 2 σ 2 ( Y T Y − 2 Y T X W + W T X T X W ) − 1 2 W T Σ p − 1 W } (23) exp\{-\frac{1}{2\sigma^2}(Y^TY-2Y^TXW+W^TX^TXW)-\frac{1}{2}W^T\Sigma_p^{-1}W\}\tag{23} exp{2σ21(YTY2YTXW+WTXTXW)21WTΣp1W}(23)
  • 我们用配方法求解,令 P ( X w ) = N ( μ w , Σ w ) P(X_w)=N(\mu_w,\Sigma_w) P(Xw)=N(μw,Σw),其对应的概率密度函数指数部分如下:
    e x p { − 1 2 ( X − μ w ) T Σ w − 1 ( X − μ w ) } (24) exp\{-\frac{1}{2}(X-\mu_w)^T\Sigma^{-1}_w(X-\mu_w)\}\tag{24} exp{21(Xμw)TΣw1(Xμw)}(24)
  • 展开后可得如下:
    e x p { − 1 2 ( X T Σ w − 1 X ⏟ Q u a d r a t i c − f o r m − X − 2 μ w T Σ w − 1 X ⏟ l i n e a r i t y + △ ⏟ o t h e r s ) } (25) exp\{-\frac{1}{2}(\underbrace{X^T\Sigma^{-1}_{w}X}_{Quadratic-form-X}-\underbrace{2\mu_w^T\Sigma^{-1}_wX}_{linearity}+\underbrace{\triangle}_{others})\}\tag{25} exp{21(QuadraticformX XTΣw1Xlinearity 2μwTΣw1X+others )}(25)
    这样我们就可以通过配方法求解上述参数。
  • 那么我们由公式23可得关于 W 的二次项为如下:
    − 1 2 σ 2 W T X T X W − 1 2 W T Σ p − 1 W = − 1 2 [ W T ( σ − 2 X T X + Σ p − 1 ) ⏟ Σ w − 1 = A W ] (26) -\frac{1}{2\sigma^2}W^TX^TXW-\frac{1}{2}W^T\Sigma_p^{-1}W=-\frac{1}{2}[W^T\underbrace{(\sigma^{-2}X^TX+\Sigma^{-1}_p)}_{\Sigma_w^{-1}=A}W]\tag{26} 2σ21WTXTXW21WTΣp1W=21[WTΣw1=A (σ2XTX+Σp1)W](26)
  • 关于 W 的一次项为如下:
    − 1 2 σ 2 ⋅ ( − 2 Y T X W ) = σ − 2 Y T X ⏟ μ w T Σ w − 1 = σ − 2 Y T X = μ w T A W (27) -\frac{1}{2\sigma^2}·(-2Y^TXW)=\underbrace{\sigma^{-2}Y^TX}_{\mu_w^T\Sigma_w^{-1}=\sigma^{-2}Y^TX=\mu_w^TA}W\tag{27} 2σ21(2YTXW)=μwTΣw1=σ2YTX=μwTA σ2YTXW(27)
  • 化简
    A μ w = σ − 2 X T Y (28) A\mu_w=\sigma^{-2}X^TY\tag{28} Aμw=σ2XTY(28)
    μ w = σ − 2 A − 1 X T Y (29) \mu_w=\sigma^{-2}A^{-1}X^TY\tag{29} μw=σ2A1XTY(29)

2.2.2 inference 结论

P ( W ∣ d a t a ) = N ( μ w , Σ w ) (30) P(W|data)=N(\mu_w,\Sigma_w)\tag{30} P(Wdata)=N(μw,Σw)(30)
μ w = σ − 2 A − 1 X T Y (31) \mu_w=\sigma^{-2}A^{-1}X^TY\tag{31} μw=σ2A1XTY(31)
Σ w = A − 1 ; ( t i p s : A = σ − 2 X T X + Σ p − 1 ) (32) \Sigma_w=A^{-1};\quad(tips:A=\sigma^{-2}X^TX+\Sigma^{-1}_p)\tag{32} Σw=A1;(tips:A=σ2XTX+Σp1)(32)

2.3 Prediction

所谓的预测问题(Prediction),就是在已知模型参数W(注:模型通过学习已经做完了inference)的情况下,当客户提供一个 X ∗ X^* X,我们去预测与之对应的 Y ∗ Y^* Y

2.3.1 模型

f ( x ) = W T X = X T W (33) f(x)=W^TX=X^TW\tag{33} f(x)=WTX=XTW(33)
y = f ( x ) + ε ; ε ∼ N ( 0 , σ 2 ) (34) y=f(x)+\varepsilon;\quad\varepsilon\sim N(0,\sigma^2)\tag{34} y=f(x)+ε;εN(0,σ2)(34)
现在我们先求解 f ( x ∗ ) f(x^*) f(x):
f ( x ∗ ) = x ∗ T W (35) f(x^*)={x^*}^{T}W\tag{35} f(x)=xTW(35)

  • 注:此时的 W 应该对应于后验,即 W ∼ P ( W ∣ d a t a ) = N ( μ w , Σ w ) , x ∗ 对 于 W 来 说 是 常 数 W\sim P(W|data)=N(\mu_w,\Sigma_w),x^*对于W来说是常数 WP(Wdata)=N(μw,Σw),xW
    x ∗ T W ∼ N ( x ∗ T μ w , x ∗ T Σ w x ∗ ) (36) {x^*}^TW\sim N({x^*}^T\mu_w,{x^*}^T\Sigma_w{x^*})\tag{36} xTWN(xTμw,xTΣwx)(36)
  • 可得无噪声时公式如下:
    P ( f ( x ∗ ) ∣ d a t a , x ∗ ) = N ( x ∗ T μ w , x ∗ T Σ w x ∗ ) (37) P(f(x^*)|data,x^*)=N({x^*}^T\mu_w,{x^*}^T\Sigma_w{x^*})\tag{37} P(f(x)data,x)=N(xTμw,xTΣwx)(37)

2.3.2 Prediction 结论

  • 预测 y ∗ , y ∗ = f ( x ∗ ) + ε y^*,y^*=f(x^*)+\varepsilon y,y=f(x)+ε
    P ( y ∗ ∣ d a t a , x ∗ ) = N ( x ∗ T μ w , x ∗ T Σ w x ∗ + σ 2 ) (38) P(y^*|data,x^*)=N({x^*}^T\mu_w,{x^*}^T\Sigma_w{x^*}+\sigma^2)\tag{38} P(ydata,x)=N(xTμw,xTΣwx+σ2)(38)

3. 综述思路总结

3.1 背景

关于贝叶斯线性回归我们主要了解下其思路,为了方便后续描述,我们定义如下变量:

  • 定义数据 Data:
    D = { ( x i , x j ) } i = 1 N , 其 中 x i ∈ R p , y i ∈ R (39) D=\{(x_i,x_j)\}_{i=1}^{N},其中 x_i \in\mathbb{R}^p,y_i\in \mathbb{R}\tag{39} D={(xi,xj)}i=1N,xiRp,yiR(39)
  • 定义模型Model:
    f ( x ) = W T X = X T W (40) f(x)=W^TX=X^TW\tag{40} f(x)=WTX=XTW(40)
    y = f ( x ) + ε , ε ∼ ( 0 , σ 2 ) (41) y=f(x)+\varepsilon,\quad \varepsilon\sim(0,\sigma^2)\tag{41} y=f(x)+ε,ε(0,σ2)(41)
  • 贝叶斯方法回归观点:

贝叶斯方法认为参数 W 不是未知的常量,W应该是一个概率分布

3.2 Inference

第一步我们需要做inference 来求解给定数据 data 的关于 W 的分布:

  • 后验Posterior; P ( W ∣ D a t a ) = N ( μ w , Σ w ) P(W|Data) = N(\mu_w,\Sigma_w) P(WData)=N(μw,Σw)
    P ( W ∣ d a t a ) ⏟ G u a s s i a n ∝ l i k e l i h o o d ⏟ G u a s s i a n × p r i o r ⏟ G u a s s i a n (42) \underbrace{P(W|data)}_{Guassian}\propto \underbrace{likelihood}_{Guassian} \times \underbrace{prior}_{Guassian} \tag{42} Guassian P(Wdata)Guassian likelihood×Guassian prior(42)

3.3 Prediction

第二步我们需要在给定的 x ∗ x^* x 的情况下,求解预测 y ∗ y^* y ?
P ( y ∗ ∣ d a t a , x ∗ ) = ∫ w P ( y ∗ ∣ w , d a t a , x ∗ ) ⋅ P ( w ∣ d a t a , x ∗ ) d w (43) P(y^*|data,x^*)=\int_wP(y^*|w,data,x^*)·P(w|data,x^*)dw\tag{43} P(ydata,x)=wP(yw,data,x)P(wdata,x)dw(43)

  • 注:因为 w 是从 data 里面学习出来的,所以 w 是可以代表数据的,故可简化得:
    P ( y ∗ ∣ w , d a t a , x ∗ ) = P ( y ∗ ∣ w , x ∗ ) (44) P(y^*|w,data,x^*)=P(y^*|w,x^*)\tag{44} P(yw,data,x)=P(yw,x)(44)
  • 注:新的数据 x ∗ x^* x 对于 w 来说没有影响,故可简化得:
    P ( w ∣ d a t a , x ∗ ) = P ( w ∣ d a t a ) ⏟ p o s t e r i o r (45) P(w|data,x^*)=\underbrace{P(w|data)}_{posterior}\tag{45} P(wdata,x)=posterior P(wdata)(45)
    故综上所述可得:
    P ( y ∗ ∣ d a t a , x ∗ ) = ∫ w P ( y ∗ ∣ w , x ∗ ) ⋅ P ( w ∣ d a t a ) d w (46) P(y^*|data,x^*)=\int_wP(y^*|w,x^*)·P(w|data)dw\tag{46} P(ydata,x)=wP(yw,x)P(wdata)dw(46)
    完 结 撒 花 完结撒花
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯线性回归模型是一种基于贝叶斯统计理论的回归模型,它可以用于建模和预测变量之间的线性关系。与传统的线性回归模型相比,贝叶斯线性回归模型引入了先验分布来描述参数的不确定性,并通过贝叶斯推断来更新参数的后验分布。 在Python中,可以使用多个库来实现贝叶斯线性回归模型,其中最常用的是PyMC3和Stan。这两个库都提供了灵活的建模语言和强大的推断算法,可以方便地构建和训练贝叶斯线性回归模型。 下面是一个使用PyMC3库实现贝叶斯线性回归模型的简单示例: ```python import pymc3 as pm import numpy as np # 生成一些随机数据 np.random.seed(0) X = np.random.randn(100, 2) true_beta = np.array([1, 2]) y = np.dot(X, true_beta) + np.random.randn(100) # 构建模型 with pm.Model() as model: # 定义先验分布 beta = pm.Normal('beta', mu=0, sd=10, shape=2) sigma = pm.HalfNormal('sigma', sd=1) # 定义线性关系 mu = pm.math.dot(X, beta) # 定义似然函数 likelihood = pm.Normal('y', mu=mu, sd=sigma, observed=y) # 进行推断 trace = pm.sample(1000, tune=1000) ``` 在这个示例中,我们首先生成了一些随机数据,然后使用PyMC3库构建了一个贝叶斯线性回归模型。模型的参数包括斜率(beta)和误差项的标准差(sigma),它们都被定义为先验分布。然后,我们定义了线性关系和似然函数,并使用MCMC算法进行推断。 以上是一个简单的贝叶斯线性回归模型的Python实现示例。你可以根据具体的需求和数据进行相应的调整和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值