逆元求法

逆元求法

时间复杂度T(n)O(log2n);

空间复杂度S(n)O(n);

 

去搜罗了一些关于逆元的各种优秀的求取方式,在下面列举出来

前置技能:欧几里得 & 扩展欧几里得

 

/*O(log n) 欧几里得, (最大公约数)*/
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }

/*O(log n) 扩欧 [ax mod b = 1]*/
long long x, y;
inline void ext_gcd(long long a, long long b, long long &x, long long &y) {
	b ? (ext_gcd(b, a % b, y, x), y -= (a / b) * x) : (x = 1, y = 0);
}

逆元O(logn)针对单个数字a,求 %p 意义下的逆元(gcd(a,p)要等于1

inline long long get_inv1(long long a, long long mod) {
	ext_gcd(a, mod, x, y);
	return (x % mod + mod) % mod; 
}

证明:略

逆元2O(n)预处理阶乘和逆元

/*O(n)阶乘求逆元 + 预处理阶乘*/
inline void get_inv2(const int &n, const int &mod) {

	fac[0] = fac[1] = 1;	
	for (int i = 2; i <= n; ++i) fac[i] = fac[i - 1] * i % mod;
	ext_gcd(fac[n], mod, x, y);
	inv[n] = (x % mod + mod) % mod;
	for (int i = n - 1; i >= 0; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
}

证明:显然针对买最后一个fac[n]需要直接用ext_gcd求取,然后其他的fac[i]每一次其实只需要消除上一个fac[i+ 1]中的i +1的影响就可以了,所以每一次乘上i + 1即可

 

逆元3O(n)递推求(1 ~ n) mod p意义下的逆元

/*O(n)线筛求(1 ~ n)逆元*/
inline void get_inv3(const int &n, const int &mod) {
	inv[1] = 1;
    for (register int i = 2; i <= n; ++i)
    	inv[i] = ((-(mod / i) * inv[mod % i]) % mod + mod) % mod;
}

证明:

    k = p / i, r = p % i, p = k * i + r

    k * i + r = 0 (mod p)

   两边同时乘上 r-1 * i-1,

   k * r-1+ i-1 = 0 (mod p)

   移项得, i-1= -k * r-1 (mod p)

    i-1 = -(p / i) *(p mod i)-1 (mod p)

   那么我们只需要设置边界inv[1]= 1, 就可以通过递推在O(n)时间内求取 (1 ~ n)  mod p 意义下的逆元了

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值