Codeforces Round #316 (Div. 2) E. Pig and Palindromes (DP)

题目地址:http://codeforces.com/contest/570/problem/E
比赛的时候急着睡觉这题没看。。。
最显然的一个DP方法是dp[i][x1][y1][x2][y2]表示以s[x1][y1]和s[x2][y2]为第i步分别与s[1][1]和s[n][m]形成的回文串的个数,但是数组大小太大。。这时候可以发现知道步数后,y1和y2可以根据x1,x2来求出来,所以可以优化成dp[i][x1][x2],然后再由于每一步都只从上一步来传递,所以可以用滚动数组滚一下就好了。
代码如下:

#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
#include <time.h>
using namespace std;
#define LL long long
#define pi acos(-1.0)
#pragma comment(linker, "/STACK:1024000000")
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
const int MAXN=500+10;
LL dp[2][MAXN][MAXN];
char s[MAXN][MAXN];
int main()
{
        int n, m, i, j, k, x1, x2, y1, y2, now, pre, tot;
        LL ans;
        while(scanf("%d%d",&n,&m)!=EOF){
                for(i=1;i<=n;i++){
                        scanf("%s",s[i]+1);
                }
                if(s[1][1]!=s[n][m]){
                        puts("0");
                        continue ;
                }
                dp[0][1][n]=1;
                tot=n+m-2>>1;
                for(i=1;i<=tot;i++){
                        pre=i+1&1; now=i&1;
                        memset(dp[now],0,sizeof(dp[now]));
                        for(j=1;j<=i+1;j++){
                                for(k=n;k>=j&&k>=n-i;k--){
                                        x1=j; y1=i-j+2;
                                        x2=k; y2=m-(i-(n-k));
                                        if(s[x1][y1]!=s[x2][y2]) continue ;
                                        dp[now][j][k]+=dp[pre][j-1][k];
                                        dp[now][j][k]+=dp[pre][j-1][k+1];
                                        dp[now][j][k]+=dp[pre][j][k];
                                        dp[now][j][k]+=dp[pre][j][k+1];
                                        dp[now][j][k]%=mod;
                                }
                        }
                }
                ans=0;
                if(n+m&1){
                        for(i=1;i<=n;i++){
                                ans=(ans+dp[now][i][i]+dp[now][i][i+1])%mod;
                        }
                }
                else{
                        for(i=1;i<=n;i++){
                                ans=(ans+dp[now][i][i])%mod;
                        }
                }
                printf("%I64d\n",ans);
        }
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值