图的计算(2):带权图的最短路径

本文介绍了带权图的概念,并详细阐述了Dijkstra算法的原理和步骤,包括如何求解从特定节点到图中其他所有节点的最短路径。讨论了算法的时间复杂性和空间复杂性,以及其直观性与计算效率的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

带权图(weighted digraph)

    设G=(V,E)是一简单图。称一元函数 w:E®R+ 为图G 的权函数,使得 对于每一条边eÎE均有一正实数w(e)ÎR+与之对应,称图G带有权w图,简称为带权图。记为G=(V,E, w)。

最短路(shortest path)

    设G=(V,E,w)是一带权图

    (1)设P=(ei1, ei2,¼, eik)G中的一条路。则路P的路长

定义为: w(P)=

 

 (2)从结点u到结点v的最短路P0满足下述条件的路:

             w(P0)=min{ w(P)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值