目录
一、VOC数据集转化为yolo系列数据集处理格式
前提:电脑上已经下载好VOC数据集或者自己的数据集
制作自己的数据集可以使用labeling标注软件获得标注好的xml文件,然后将其参照VOC数据集存放方式xml文件放在Annotations文件夹中,原图放在JPEGImages中
有些VOC数据集的ImageSets/Main文件夹中可能已经存在数据集的划分文件了,就是main中的四个txt文件
(1)如果没有上述四个文件,需要先执行数据集划分代码进行数据集划分,这个划分数据集的文件可以放在VOC2007目录下,与Annotations等文件夹同级
"""
function: create train.txt and test.txt in ImageSets\Main
"""
import os
import random
trainval_percent = 0.8 # 可自行进行调节(这里设置训练:验证:测试的比例是6:2:2)
train_percent = 3/4
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
(2)如果已经有上述四个文件了,我们只需要执行标签生成程序 xml_voc_to_yolo.py,代码如下
import os
from os import listdir, getcwd
from os.path import join
import cv2
sets = ['train', 'val']
classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
# in_file = open('JILI_NB\Annotations/%s.xml' % (image_id)) # 修改路径(最好使用全路径)
# img_file = cv2.imread('JILI_NB\images\%s.jpg' % (image_id))
# out_file = open('JILI_NB\labels/%s.txt' % (image_id), 'w+') # 修改路径(最好使用全路径)
in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % (image_id)) # 修改路径(最好使用全路径)
img_file = cv2.imread('VOCdevkit\VOC2007\JPEGImages\%s.jpg' % (image_id))
out_file = open('VOCdevkit/VOC2007/labels/%s.txt' % (