海豚湾

海豚湾

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
好的,我可以为你提供一个基于 Python 的简单游览长隆世界动物园最佳旅游路线的代码。在这个代码中,我们将使用广度优先搜索算法(BFS)来查找最短路线。 首先,我们需要定义一些变量和数据结构: ```python # 地图 map = { "入口": {"海洋王国", "欢乐世界"}, "欢乐世界": {"入口", "动物世界", "百鸟园", "熊猫馆"}, "海洋王国": {"入口", "海狮湾", "海豚湾", "极地海洋馆"}, "动物世界": {"欢乐世界", "大象馆", "狮虎山"}, "百鸟园": {"欢乐世界", "孔雀园", "鹦鹉馆"}, "熊猫馆": {"欢乐世界", "熊猫剧场"}, "海狮湾": {"海洋王国"}, "海豚湾": {"海洋王国"}, "极地海洋馆": {"海洋王国"}, "大象馆": {"动物世界"}, "狮虎山": {"动物世界"}, "孔雀园": {"百鸟园"}, "鹦鹉馆": {"百鸟园"}, "熊猫剧场": {"熊猫馆"} } # 起点和终点 start = "入口" end = "海狮湾" ``` 接下来,我们可以定义 BFS 算法来找到最短路线: ```python from collections import deque # BFS 算法 def bfs(graph, start, end): # 用来记录访问过的节点 visited = set() # 用来存储每个节点的前驱节点,便于最后回溯路径 predecessor = dict() # 用来存储每个节点到起点的距离 distance = dict() # 初始化起点信息 queue = deque() visited.add(start) predecessor[start] = None distance[start] = 0 queue.append(start) # 开始搜索 while queue: node = queue.popleft() for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) predecessor[neighbor] = node distance[neighbor] = distance[node] + 1 if neighbor == end: # 找到目标节点,回溯路径 path = [] while neighbor: path.append(neighbor) neighbor = predecessor[neighbor] path.reverse() return path, distance[end] queue.append(neighbor) # 没有找到路径 return None, None ``` 最后,我们可以调用 BFS 函数来查找最短路线: ```python path, distance = bfs(map, start, end) if path: print("最短路线为:", "->".join(path)) print("最短距离为:", distance) else: print("没有找到路径。") ``` 完整代码如下所示: ```python from collections import deque # 地图 map = { "入口": {"海洋王国", "欢乐世界"}, "欢乐世界": {"入口", "动物世界", "百鸟园", "熊猫馆"}, "海洋王国": {"入口", "海狮湾", "海豚湾", "极地海洋馆"}, "动物世界": {"欢乐世界", "大象馆", "狮虎山"}, "百鸟园": {"欢乐世界", "孔雀园", "鹦鹉馆"}, "熊猫馆": {"欢乐世界", "熊猫剧场"}, "海狮湾": {"海洋王国"}, "海豚湾": {"海洋王国"}, "极地海洋馆": {"海洋王国"}, "大象馆": {"动物世界"}, "狮虎山": {"动物世界"}, "孔雀园": {"百鸟园"}, "鹦鹉馆": {"百鸟园"}, "熊猫剧场": {"熊猫馆"} } # 起点和终点 start = "入口" end = "海狮湾" # BFS 算法 def bfs(graph, start, end): # 用来记录访问过的节点 visited = set() # 用来存储每个节点的前驱节点,便于最后回溯路径 predecessor = dict() # 用来存储每个节点到起点的距离 distance = dict() # 初始化起点信息 queue = deque() visited.add(start) predecessor[start] = None distance[start] = 0 queue.append(start) # 开始搜索 while queue: node = queue.popleft() for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) predecessor[neighbor] = node distance[neighbor] = distance[node] + 1 if neighbor == end: # 找到目标节点,回溯路径 path = [] while neighbor: path.append(neighbor) neighbor = predecessor[neighbor] path.reverse() return path, distance[end] queue.append(neighbor) # 没有找到路径 return None, None # 查找最短路线 path, distance = bfs(map, start, end) if path: print("最短路线为:", "->".join(path)) print("最短距离为:", distance) else: print("没有找到路径。") ``` 希望这个代码能够帮助你规划游览长隆世界动物园的最佳旅游路线!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值