examples of scatter_nd_update

Several simple examples showing the usage of scatter_nd_update is provided in the tensor flow official document( accessible via https://www.usetensorflow.com/api_docs/python/tf/scatter_nd_update). However, this example only shows its usage on 1 dimensional tensor. It cost me quite a time to use it on multi dimensional tensor. Meanwhile, few examples about its usage on multi dimensional tensor can be found on the web. Following shows three examples I have successfully finished. Before that, first shows the example from the tensor flow official document.

Example 1:( from tensorflow documentation)

For example, say we want to update 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this:

ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
update = tf.scatter_nd_update(ref, indices, updates)
with tf.Session() as sess:
  print sess.run(update)

The resulting update to ref would look like this:

[1, 11, 3, 10, 9, 6, 7, 12]

Next are two examples written by me.

Example 2:

>>> ref = tf.Variable(tf.ones([2,3],tf.int32)) 
>>> updates = tf.constant([[0,0,0]])
>>> update = tf.scatter_nd_update(ref,[[0]],updates) 
>>> init = tf.global_variables_initializer()
>>> sess.run(init)
>>> sess.run(update)
array([[0, 0, 0],
   [1, 1, 1]], dtype=int32)

Example 3:

>>> ref = tf.Variable(tf.ones([2,3,3],tf.int32))
>>> indices = tf.constant([[0,1]])
#>>> updates = tf.constant([0,0,0]) #wrong
>>> updates = tf.constant([[0,0,0]])#correct
>>> update = tf.scatter_nd_update(ref,indices,updates) 
>>> init = tf.global_variables_initializer()
>>> sess.run(init)
>>> print(ref.eval())
[[[1 1 1]
  [1 1 1]
  [1 1 1]]

 [[1 1 1]
  [1 1 1]
  [1 1 1]]]
>>> sess.run(update)
array([[[1, 1, 1],
    [0, 0, 0],
    [1, 1, 1]],

   [[1, 1, 1],
    [1, 1, 1],
    [1, 1, 1]]], dtype=int32)

Example 4:

>>> updates = tf.constant([0])
>>> indices = tf.constant([[1,0,1]])
>>> init = tf.global_variables_initializer()
>>> sess.run(init)
>>> update = tf.scatter_nd_update(ref,indices,updates)
>>> sess.run(update)
array([[[1, 1, 1],
    [1, 1, 1],
    [0, 0, 0]],

   [[1, 0, 1],
    [1, 1, 1],
    [1, 1, 1]]], dtype=int32)
`#ifdef CONFIG_FLUORIDE_EXAMPLES_HD_KEYBOARD` 这一行是在 C 或者其他支持预处理器宏的编程语言中使用的预处理器指令。这里它主要用于条件编译,即根据预处理器宏 `CONFIG_FLUORIDE_EXAMPLES_HD_KEYBOARD` 是否已被定义,决定是否包含后续的一段代码块。 这个宏的名称看起来类似于一个配置选项,可能是某个软件库或者项目内部的一个定义,用于指示构建系统应该包含或跳过与 HD 键盘相关的示例代码。如果在构建过程中已经定义了 `CONFIG_FLUORIDE_EXAMPLES_HD_KEYBOARD` 宏,那么这一行之后的代码将被视为有效并会被实际编译;反之,如果没有定义此宏,则这部分代码将会被编译器忽略,不会生成任何目标代码。 ### 实际用途 这种机制在大型项目中非常常见,尤其是在涉及多种配置选项的时候。它可以允许开发者或构建系统选择性地启用特定的功能模块,无需修改整个源码,只需要更改对应的配置宏即可。这对于简化编译过程、优化构建时间、避免不必要的代码生成都有很大的帮助。 ### 示例使用 假设在某个嵌入式 Linux 驱动程序库中,有如下代码片段: ```c #ifdef CONFIG_FLUORIDE_EXAMPLES_HD_KEYBOARD #include "hd_keyboard_example.c" #endif ``` 这段代码意味着,只要在构建该项目时定义了 `CONFIG_FLUORIDE_EXAMPLES_HD_KEYBOARD`,就会自动引入并编译 `hd_keyboard_example.c` 文件的内容,从而实现 HD 键盘相关的功能演示或测试。 ### 注意事项 1. **命名规范**:确保宏名清晰明了,以便于团队成员理解其含义。 2. **冲突检查**:避免同名的配置宏同时被定义,导致不确定的行为。 3. **文档说明**:在项目的文档或注释中明确说明哪些宏需要被定义,以及它们的作用。 ### 相关问题: 1. **如何正确使用预处理器宏来进行条件编译?** 2. **当一个配置选项被错误地禁用时,可能会导致哪些潜在问题?** 3. **在大型项目中管理众多的配置宏有何最佳实践建议?** 以上这些问题进一步探讨了预处理指令在软件工程中的应用及其重要性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值